Networking: A Beginner's Guide Fifth Edition- P14
Số trang: 5
Loại file: pdf
Dung lượng: 361.92 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Networking: A Beginner’s Guide Fifth Edition- P14:I have run into many people over the years who have gained good evenimpressive working knowledge of PCs, operating systems, applications,and common problems and solutions. Many of these people are wizards withdesktop computers.
Nội dung trích xuất từ tài liệu:
Networking: A Beginner’s Guide Fifth Edition- P14 Chapter 4: Understanding Network Cabling 47 of Token Ring networks are offset somewhat by the greater overhead and processing needs to handle the tokens. Overall, Token Ring networks perform about as fast as Ethernet networks with similar bandwidth. IBM invented the Token Ring network technology in the late 1960s, and the first Token Ring networks started appearing in 1986. While quite a few Token Ring LANs are installed (running at either 4 Mbps or 16 Mbps), you tend to see them predominantly in companies that have a strong IBM relationship and, perhaps, also use an IBM mainframe or minicomputer. If you’re designing a new LAN, generally your best bet is to use Ethernet in a star topology. You’ll find network equipment for this choice is readily available and inexpensive. Many qualified installers are available for 100Base-T or 1000Base-T. (There is little sense in installing 10Base-T these days; in fact, the equipment is no longer available.) As noted earlier, for new networks, you should install Cat-5E cable at a minimum, even if you’re initially going to use 100Base-T, so that you have a ready upgrade path to the faster standards. Use Token Ring if some external need is driving this choice, such as connectivity to an old IBM mainframe that doesn’t support Ethernet.Demystifying Network Cabling Network cabling can be incredibly confusing. Not only are there many different types of network cables—all with their own names and properties—but often you can select different types of cables for a single type of network. For example, Ethernet networks can use an astonishing number of cables, ranging from coaxial cable, to unshielded or shielded twisted-pair cable, to fiber-optic cable. To design or support any given network, you need to know your cable choices and how to maintain the particular type of cable you select. The focus in this section is to demystify cabling systems for you. It covers the most common types of network cable—the kinds that you’ll find in 99 percent of the networks in existence and that you’ll use for 99 percent of any new networks. When appropriate, I will make passing reference to other cable types so that you know what they are, but you should focus your attention on only a few ubiquitous cable types— primarily the ones discussed here.Overview of Basic Cable Types The most common network cable types are unshielded twisted-pair (UTP) and coaxial, followed by shielded twisted-pair (STP) and fiber optic. UTP is by far the most common type in use today. UTP cable consists of two or more pairs of plastic-insulated conductors inside a cable sheath (made from either vinyl or Teflon). For each pair, the two conductors are twisted within the cable, helping the cable resist outside electrical interference. Rigid standards exist for how this cable is made, including the proper distance between each twist of the pair. Figure 4-5 shows an example of UTP cable.48 Networking: A Beginner’s Guide Twisted pairs Figure 4-5. UTP cable STP is similar to UTP, but STP has a braided metal shield surrounding the twisted pairs to further reduce the chance of interference from electrical sources outside the cable. Coaxial cable consists of a central copper conductor wrapped in a plastic insulation material, which is surrounded by a braided wire shield and, finally, wrapped in a plastic cable sheath. (The coaxial cable used for televisions is similar in design.) Two main types are used for networks: Thin Ethernet (10Base-2), which uses RG-58/AU or RG-58/CU cable, and Thick Ethernet (10Base-5), which uses—you guessed it—a much thicker coaxial cable called RG-8. Figure 4-6 shows an example of coaxial cable. Fiber-optic cable uses a glass strand and carries the data signals as light instead of electricity. It used to be that fiber-optic cable was required for higher-speed networks, but this is changing, and often UTP or STP can be used instead. This is good news, as fiber-optic cable is extremely expensive to purchase, install, and maintain. However, fiber-optic cable can do one thing that copper cables cannot: span extremely long distances. Fiber-optic cable can easily reach two miles at 100 Mbps. For this reason, fiber-optic cable is often used to connect together buildings in a campus-like setting. But other than when you need to span very long distances, you should avoid fiber- optic cable. Twisted-Pair Cabling: The King of Net ...
Nội dung trích xuất từ tài liệu:
Networking: A Beginner’s Guide Fifth Edition- P14 Chapter 4: Understanding Network Cabling 47 of Token Ring networks are offset somewhat by the greater overhead and processing needs to handle the tokens. Overall, Token Ring networks perform about as fast as Ethernet networks with similar bandwidth. IBM invented the Token Ring network technology in the late 1960s, and the first Token Ring networks started appearing in 1986. While quite a few Token Ring LANs are installed (running at either 4 Mbps or 16 Mbps), you tend to see them predominantly in companies that have a strong IBM relationship and, perhaps, also use an IBM mainframe or minicomputer. If you’re designing a new LAN, generally your best bet is to use Ethernet in a star topology. You’ll find network equipment for this choice is readily available and inexpensive. Many qualified installers are available for 100Base-T or 1000Base-T. (There is little sense in installing 10Base-T these days; in fact, the equipment is no longer available.) As noted earlier, for new networks, you should install Cat-5E cable at a minimum, even if you’re initially going to use 100Base-T, so that you have a ready upgrade path to the faster standards. Use Token Ring if some external need is driving this choice, such as connectivity to an old IBM mainframe that doesn’t support Ethernet.Demystifying Network Cabling Network cabling can be incredibly confusing. Not only are there many different types of network cables—all with their own names and properties—but often you can select different types of cables for a single type of network. For example, Ethernet networks can use an astonishing number of cables, ranging from coaxial cable, to unshielded or shielded twisted-pair cable, to fiber-optic cable. To design or support any given network, you need to know your cable choices and how to maintain the particular type of cable you select. The focus in this section is to demystify cabling systems for you. It covers the most common types of network cable—the kinds that you’ll find in 99 percent of the networks in existence and that you’ll use for 99 percent of any new networks. When appropriate, I will make passing reference to other cable types so that you know what they are, but you should focus your attention on only a few ubiquitous cable types— primarily the ones discussed here.Overview of Basic Cable Types The most common network cable types are unshielded twisted-pair (UTP) and coaxial, followed by shielded twisted-pair (STP) and fiber optic. UTP is by far the most common type in use today. UTP cable consists of two or more pairs of plastic-insulated conductors inside a cable sheath (made from either vinyl or Teflon). For each pair, the two conductors are twisted within the cable, helping the cable resist outside electrical interference. Rigid standards exist for how this cable is made, including the proper distance between each twist of the pair. Figure 4-5 shows an example of UTP cable.48 Networking: A Beginner’s Guide Twisted pairs Figure 4-5. UTP cable STP is similar to UTP, but STP has a braided metal shield surrounding the twisted pairs to further reduce the chance of interference from electrical sources outside the cable. Coaxial cable consists of a central copper conductor wrapped in a plastic insulation material, which is surrounded by a braided wire shield and, finally, wrapped in a plastic cable sheath. (The coaxial cable used for televisions is similar in design.) Two main types are used for networks: Thin Ethernet (10Base-2), which uses RG-58/AU or RG-58/CU cable, and Thick Ethernet (10Base-5), which uses—you guessed it—a much thicker coaxial cable called RG-8. Figure 4-6 shows an example of coaxial cable. Fiber-optic cable uses a glass strand and carries the data signals as light instead of electricity. It used to be that fiber-optic cable was required for higher-speed networks, but this is changing, and often UTP or STP can be used instead. This is good news, as fiber-optic cable is extremely expensive to purchase, install, and maintain. However, fiber-optic cable can do one thing that copper cables cannot: span extremely long distances. Fiber-optic cable can easily reach two miles at 100 Mbps. For this reason, fiber-optic cable is often used to connect together buildings in a campus-like setting. But other than when you need to span very long distances, you should avoid fiber- optic cable. Twisted-Pair Cabling: The King of Net ...
Tìm kiếm theo từ khóa liên quan:
Kĩ thuật mạng Network tài liệu về Network sử dụng Network tạo Network giáo trình mạng máy tính mạng máy tính nâng cao thiết bị mạngGợi ý tài liệu liên quan:
-
47 trang 235 3 0
-
Giáo trình môn học/mô đun: Mạng máy tính (Ngành/nghề: Quản trị mạng máy tính) - Phần 1
68 trang 184 0 0 -
Giáo trình Mạng máy tính (Nghề: Tin học ứng dụng - Trung cấp) - Trường Cao đẳng Cộng đồng Đồng Tháp
189 trang 163 0 0 -
139 trang 158 0 0
-
Giáo trình Mạng máy tính (Nghề: Quản trị mạng máy tính - Cao đẳng) - Tổng cục dạy nghề
102 trang 147 1 0 -
47 trang 138 1 0
-
67 trang 129 1 0
-
94 trang 123 3 0
-
Giáo trình Mạng máy tính (Nghề: Thiết kế đồ hoạ - CĐ/TC) - Trường Cao đẳng nghề Đồng Tháp
110 trang 108 0 0 -
Giáo trình Mạng máy tính (dành cho ngành truyền thông): Phần 1 - CĐ Kỹ Thuật Cao Thắng
65 trang 106 0 0