Danh mục

Ôn tập Toán: Cực Trị của hàm số

Số trang: 24      Loại file: pdf      Dung lượng: 307.68 KB      Lượt xem: 7      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 8,000 VND Tải xuống file đầy đủ (24 trang) 0
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Giá trị cực đại và gái trị cực tiểu được gọi chung là cực trị... - hàm số có thể đạt cực trị tại một điểm mà tại đó hàm số không có đạo hàm - hàm số chỉ có thể đạt cực trị...
Nội dung trích xuất từ tài liệu:
Ôn tập Toán: Cực Trị của hàm sốNguyễn Phú Khánh – Đà Lạt ( m − 1)x + m . Ñònh m ñeå tieáp tuyeán vôùi (Cm) taïi ñieåm treân (Cm) coù hoaønh ñoä x0 = 4 thìCho (Cm) : y = x−msong song vôùi ñöôøng phaân giaùc thöù 2 cuûa goùc heä truïc. −m 2 |y = f (x) = | m (x − m)2Ñeå tieáp tuyeán vôùi (Cm) taïi ñieåm vôùi ñöôøng phaân giaùc (Δ 2 ) : y = − x , ta phaûi coù: −m 2fm = −1 ⇔ = −1 ⇔ m 2 = (4 − m)2 ⇔ m = 2 | (4 − m) 2 (3m + 1)x − m 2 + m Cho (C) : y = , m ≠ 0. Tìm m ñeå tieáp tuyeán vôùi (C) taïi giao ñieåm vôùi truïc hoaønh x+msong song y = x. Vieát phöông trình tieáp tuyeán.Hoaønh ñoä giao ñieåm cuûa (C) vôùi truïc hoaønh m2 − m 1⎫ ⎧x0 = , m ∉ ⎨0, − ,1⎬ 3m + 1 3⎭ ⎩ 4m 2y| = (x + m)2Tieáp tuyeán taïi ñieåm (C) coù hoaønh ñoä // y = x 4m 2 = 1 ⇔ 4m 2 = (x 0 + m)2 ⇔ x 0 = m ∨ x 0 = −3m(x 0 + m) 2 m2 − m ⎡ ⎡ m = −1 m= ⎢ 3m + 1 ⇔ ⎢⇔⎢ ⎢m = − 1 m2 − m ⎢ ⎢ −3m = 3m + 1 5 ⎣ ⎣ • m = −1 tieáp tuyeán taïi (-1,0) coù pt : y = x + 1 ⎛3 ⎞ 3 1 • m = − tieáp tuyeán taïi ⎜ , 0 ⎟ coù pt : y = x − ⎝5 ⎠ 5 5 mCho (C) : y = x − 1 + .Tìm m ñeå coù ñieåm maø töø ñoù veõ ñöôïc 2 tieáp tuyeán vôùi ñoà thò vuoâng goùc nhau x +1Goïi M 0 (x 0 , y 0 ) laø ñieåm caàn tìm ⇒ y = k(x − x 0 ) + y 0 laø ñöôøng thaúng (d) qua M0 m ⎧ ⎪x − 1 + x + 1 = k(x − x 0 ) + y 0 = kx + k − k − kx 0 + y 0 ⎪(d) laø t2 ⇔ ⎨ 1 ⎪1 − =k ⎪ (x 0 + 1)2 ⎩ m ⎧ ⎪x − 1 + x + 1 = k(x + 1) − (1 + x 0 )k + y 0 ⎪⇔⎨ ⎪x + 1 − 1 = k(x + 1) ⎪ x +1 ⎩Nguyễn Phú Khánh – Đà Lạt m 1 ⎧ ⎪x − 1 + x + 1 = x + 1 − x + 1 − (1 − x 0 )k + y 0 ⎪⇔⎨ ⎪ 1 = 1− k ⎩ (x + 1) 2 ⎪ ⎧ m +1 y0 + 2 ⎧ = y 0 + 2 − (x 0 + 1)k ⎪ ⎪k ≠ x + 1 ⎪ x +1⇔⎨ ⇔⎨ 0 2 ⎪⎛ m + 1 ⎞ = (1 − k)(m + 1)2 ⎪ y + 2 − (x + 1)k 2 = (1 − k)(m + 1)2 ⎩[ 0 ] ⎪⎜ x + 1 ⎟ 0 ⎩⎝ ⎠ y0 + 2 ⎧ ⎪k ≠ x0 + 1⇔⎨ ⎪(x + 1)2 k 2 + 2(2m − x )y − 2x − y − 2)k + (y + 2)2 − 4m = 0 (*) ⎩0 0 0 0 0 0 y0 + 2Töø M0 keû ñöôïc 2 tieáp tuyeán vuoâng goùc nhau ⇔ pt (*) coù 2 nghieäm thoûa k1k2 = -1 vaø khaùc x0 + 1 y0 + 2 ⎧ ⎪k ≠ x0 + 1 ⇒m>0⇔⎨ ⎪(x + 1)2 + (y + 2)2 = 4m ⎩0 0 x +1Tìm toaï ñoä giao ñieåm cuûa caùc tieáp tuyeán cuûa ñoà thò y = vôùi truïc hoaønh , bieát raèng tieáp tuyeán ñoù x −3vuoâng goùc vôùi ñöôøng thaúng y = x + 2006 4y| = − , ∀x ≠ 3 (x − 3)2Goïi (T) laø tieáp tuyeán cuûa (C) vuoâng goùc vôùi ñöôøng thaúng y = x + 2006 , khi ñoù (T) coù heä soá goùc laø KT = -1 ⎡x = 5 4 ⇒⎢ 0. Goïi (x0,y0) laø tieáp ñieåm cuûa (d) vaø (C) , ta coù K T = y| ⇔ −1 = − ⎣ x0 = 1 (x 0 − 3) 2 • x 0 = 1 ⇒ y 0 = −1 ⇒ (T1 ) : y = − x • x 0 = 5 ⇒ y 0 = 3 ⇒ (T2 ) : y = −x + 8(T1 ) ∩ (Ox) = {O(0, 0)} ; (T2 ) ∩ (Ox) = {A(8, 0)} x+2Cho haøm soá y = f(x) = ; goïi ñoà thò haøm soá laø (C) , vaø A(0,a).Xaùc ñònh a ñeå töø A keû ñöôïc 2 tieáp x −1tuyeán ñeán (C) sao cho 2 tieáp tuyeán töông öùng naèm veà 2 phía ñoái vôùi truïc OxPhöông trình tieáp tuyeán (T) vôùi (C) taïi M 0 (x ...

Tài liệu được xem nhiều: