Phương pháp trình nghiệm nguyên
Số trang: 8
Loại file: pdf
Dung lượng: 89.85 KB
Lượt xem: 19
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu phương pháp trình nghiệm nguyên, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Phương pháp trình nghiệm nguyên PHƯƠNG TRÌNH NGHI M NGUYÊN 1. Phương trình b c nh t hai n ax + by = c Phương trình có nghi m khi và ch khi (a,b) | c gi i phương trình ta tìm m t nghi m riêng (x0,y0) t ó suy ra t t c các x = x 0 + btnghi m c a phương trình (t ∈ Z) y = y 0 − at Ví d . Gi i phương trình 12x + 37y = 2008 Gi i T phương trình ta suy ra y ≡ 4 mod 12, ta ch n y0 = 4 ⇒ x0 = 155.V y nghi m x = 155 + 37tc a phương trình là (t ∈ Z) y = 4 − 12t 2. Phương trình b c nh t ba n ax + by + cz = d gi i phương trình ta ưa v d ng ax + by = d – cz v i (a,b) = 1 r i ch n z =a tùy ý. Ví d . Gi i phương trình 13x + 25y – 41z = 2009 Gi i. Cho z = a ⇒ 13x + 25y = 2009 + 41a (*) phương trình 13x + 25y = 1 có m t nghi m là (2;–1) nên nghi m c a (*) là x = 2(2009 + 41a) + 25b (t ∈ Z) ⇒ Nghi m c a phương trình ban u là y = −(2009 + 41a) − 13b x = 2(2009 + 41a) + 25b y = −(2009 + 41a) − 13b (t ∈ Z) z = a 3. Phương trình ax + by + cxy = d b ab Ta ưa v d ng tích x(a + cy) + (a + cy) = d + ⇔ (cx + b)(cy + a) = ab + cd c cT ây ta có cx + b, cy + a là các ư c c a ab + cd Ví d . Gi i phương trình 2x + 5y – 3xy = 1 Gi i x(2 – 3y) – 5/3. (2 – 3y) = 1 – 10/3 ⇔ (3x – 5)(3y – 2) = 7 t ây ta có cácnghi m là (4,1) và (2,3). 4. M t vài phương pháp thư ng s d ng khi gi i phương trình nghi m nguyên 4.1. ưa v t ng các bình phương Ví d . Gi i phương trình x2 – 6xy + 14y2 – 10y – 16 = 0 Gi i. phương trình ⇔ (x – 3y)2 + 5(y – 1)2 = 21 1 ⇒ 5(y – 1)2 ≤ 21 ⇒ (y – 1)2 = 0, 1, 4 (y – 1)2 = 0 ⇒ (x – 3y)2 = 21 (lo i) (y – 1)2 = 1 ⇒ (x – 3y)2 = 16 ta có các nghi m (4,0),(–4,0), (10,2),(2,2) (y – 1)2 = 4 ⇒ ( x – 3y)2 = 1 ta có các nghi m (10,3),(8,3),(–2,–1),(–4,–1) 4.2. ưa v tích s b ng 0. Ví d . Gi i phương trình 6x2 – 10xy + 4y2 + 3x – 2y – 32 = 0 Gi i. Phương trình ⇔ (2x – 2y + 1)(3x – 2y) = 32 Do 2x – 2y + 1 là s l nên 2x – 2y + 1 b ng ± 1 t ây ta có các nghi m (32,32), ( – 30, – 29) 4.3. Dùng các tính ch t chia h t, ng dư. Ví d . Gi i phương trình 3x2 – 2008y2 = 2009 Gi i. Nh n xét n u x ch n thì x ≡ 0 mod 4 còn n u x l thì x2 ≡ 1 mod 4 , t c là m t 2s chính phương ng dư v i 0 ho c 1 modulo 4. Ta th y v trái c a phương trình luôn ng dư v i 0 ho c 3 mod 4 còn v ph i ng dư v i 1 mod 4 như v y phương trình vô nghi m. Ví d . Gi i phương trình x3 + 21y2 + 5 = 0 Gi i. 3 3 2 x ≡ 0, 1, – 1 mod 7 ⇒ x + 21y + 5 ≡ 5, 6, 4 mod 7 ⇒ phương trình vônghi m. Ví d . Gi i phương trình 5x2 + 6x + 11 = y2 + 4y Gi i. Phương trình ⇔ 4x2 + (x + 3)2 + 6 = (y + 2)2 V trái ng dư 2, 3 mod 4, v ph i ng dư 0, 1 mod 4 ⇒ phương trìnhvônghi m Ví d . Gi i phương trình 6x = y2 + y – 2 Gi i. 6x ≡ 1 mod 5 y2 + y – 2 = (y – 1)(y + 2) ≡ 0,3,4 mod 5 ⇒ phương trình vô nghi m Ví d . Gi i phương trình x2 = 2y2 – 8y + 3 Gi i. T phương trình ta th y x ph i l ⇒ x = 2k + 1 ⇒ (2k + 1)2 = 2y2 – 8y + 3 ⇒ 4k2 + 4k + 1 = 2y2 – 8y + 3 ⇒ 2k2 + 2k = y2 – 4y + 1 2k2 + 2k = 2k(k + 1) 4 ⇒ y2 + 1 4 (vô lý) ⇒ phương trình vô nghi m. 4.4. Dùng tính ch t A n < Xn < (A + 2)n ⇒ Xn = (A + 1)n Ví d . Gi i phương trình x3 + x2 + x + 1 = y3 2 Gi i V i x < – 1 hay x > 0 ta có x < y < (x + 1)3 ⇒ phương trình vô nghi m 3 3 V i x = 0 ta có nghi m (0,1) V i x = –1 ta có nghi m ( –1, 0) Ví d . Gi i phương trình x(x + 1)(x + 7)(x + 8) = y2 Gi i. phương trình ⇔ (x2 + 8x)(x2 + 8x + 7) = y2 t m = x2 + 8x ta có m2 + 7m = y2 N u m > 9 thì (m + 3)2 < y2 < (m + 4) ...
Nội dung trích xuất từ tài liệu:
Phương pháp trình nghiệm nguyên PHƯƠNG TRÌNH NGHI M NGUYÊN 1. Phương trình b c nh t hai n ax + by = c Phương trình có nghi m khi và ch khi (a,b) | c gi i phương trình ta tìm m t nghi m riêng (x0,y0) t ó suy ra t t c các x = x 0 + btnghi m c a phương trình (t ∈ Z) y = y 0 − at Ví d . Gi i phương trình 12x + 37y = 2008 Gi i T phương trình ta suy ra y ≡ 4 mod 12, ta ch n y0 = 4 ⇒ x0 = 155.V y nghi m x = 155 + 37tc a phương trình là (t ∈ Z) y = 4 − 12t 2. Phương trình b c nh t ba n ax + by + cz = d gi i phương trình ta ưa v d ng ax + by = d – cz v i (a,b) = 1 r i ch n z =a tùy ý. Ví d . Gi i phương trình 13x + 25y – 41z = 2009 Gi i. Cho z = a ⇒ 13x + 25y = 2009 + 41a (*) phương trình 13x + 25y = 1 có m t nghi m là (2;–1) nên nghi m c a (*) là x = 2(2009 + 41a) + 25b (t ∈ Z) ⇒ Nghi m c a phương trình ban u là y = −(2009 + 41a) − 13b x = 2(2009 + 41a) + 25b y = −(2009 + 41a) − 13b (t ∈ Z) z = a 3. Phương trình ax + by + cxy = d b ab Ta ưa v d ng tích x(a + cy) + (a + cy) = d + ⇔ (cx + b)(cy + a) = ab + cd c cT ây ta có cx + b, cy + a là các ư c c a ab + cd Ví d . Gi i phương trình 2x + 5y – 3xy = 1 Gi i x(2 – 3y) – 5/3. (2 – 3y) = 1 – 10/3 ⇔ (3x – 5)(3y – 2) = 7 t ây ta có cácnghi m là (4,1) và (2,3). 4. M t vài phương pháp thư ng s d ng khi gi i phương trình nghi m nguyên 4.1. ưa v t ng các bình phương Ví d . Gi i phương trình x2 – 6xy + 14y2 – 10y – 16 = 0 Gi i. phương trình ⇔ (x – 3y)2 + 5(y – 1)2 = 21 1 ⇒ 5(y – 1)2 ≤ 21 ⇒ (y – 1)2 = 0, 1, 4 (y – 1)2 = 0 ⇒ (x – 3y)2 = 21 (lo i) (y – 1)2 = 1 ⇒ (x – 3y)2 = 16 ta có các nghi m (4,0),(–4,0), (10,2),(2,2) (y – 1)2 = 4 ⇒ ( x – 3y)2 = 1 ta có các nghi m (10,3),(8,3),(–2,–1),(–4,–1) 4.2. ưa v tích s b ng 0. Ví d . Gi i phương trình 6x2 – 10xy + 4y2 + 3x – 2y – 32 = 0 Gi i. Phương trình ⇔ (2x – 2y + 1)(3x – 2y) = 32 Do 2x – 2y + 1 là s l nên 2x – 2y + 1 b ng ± 1 t ây ta có các nghi m (32,32), ( – 30, – 29) 4.3. Dùng các tính ch t chia h t, ng dư. Ví d . Gi i phương trình 3x2 – 2008y2 = 2009 Gi i. Nh n xét n u x ch n thì x ≡ 0 mod 4 còn n u x l thì x2 ≡ 1 mod 4 , t c là m t 2s chính phương ng dư v i 0 ho c 1 modulo 4. Ta th y v trái c a phương trình luôn ng dư v i 0 ho c 3 mod 4 còn v ph i ng dư v i 1 mod 4 như v y phương trình vô nghi m. Ví d . Gi i phương trình x3 + 21y2 + 5 = 0 Gi i. 3 3 2 x ≡ 0, 1, – 1 mod 7 ⇒ x + 21y + 5 ≡ 5, 6, 4 mod 7 ⇒ phương trình vônghi m. Ví d . Gi i phương trình 5x2 + 6x + 11 = y2 + 4y Gi i. Phương trình ⇔ 4x2 + (x + 3)2 + 6 = (y + 2)2 V trái ng dư 2, 3 mod 4, v ph i ng dư 0, 1 mod 4 ⇒ phương trìnhvônghi m Ví d . Gi i phương trình 6x = y2 + y – 2 Gi i. 6x ≡ 1 mod 5 y2 + y – 2 = (y – 1)(y + 2) ≡ 0,3,4 mod 5 ⇒ phương trình vô nghi m Ví d . Gi i phương trình x2 = 2y2 – 8y + 3 Gi i. T phương trình ta th y x ph i l ⇒ x = 2k + 1 ⇒ (2k + 1)2 = 2y2 – 8y + 3 ⇒ 4k2 + 4k + 1 = 2y2 – 8y + 3 ⇒ 2k2 + 2k = y2 – 4y + 1 2k2 + 2k = 2k(k + 1) 4 ⇒ y2 + 1 4 (vô lý) ⇒ phương trình vô nghi m. 4.4. Dùng tính ch t A n < Xn < (A + 2)n ⇒ Xn = (A + 1)n Ví d . Gi i phương trình x3 + x2 + x + 1 = y3 2 Gi i V i x < – 1 hay x > 0 ta có x < y < (x + 1)3 ⇒ phương trình vô nghi m 3 3 V i x = 0 ta có nghi m (0,1) V i x = –1 ta có nghi m ( –1, 0) Ví d . Gi i phương trình x(x + 1)(x + 7)(x + 8) = y2 Gi i. phương trình ⇔ (x2 + 8x)(x2 + 8x + 7) = y2 t m = x2 + 8x ta có m2 + 7m = y2 N u m > 9 thì (m + 3)2 < y2 < (m + 4) ...
Tìm kiếm theo từ khóa liên quan:
ôn thi hóa luyện thi lý luyện kỹ năng giải đề trắc nghiệm vật lý trắc nghiệm hóa học bài tập toán giải tíchGợi ý tài liệu liên quan:
-
Đề thi khảo sát chất lượng hóa học 12 dự thi đại học 2014 - Trường THPT chuyên ĐH KHTN - Mã đề 179
10 trang 114 0 0 -
14 trang 108 0 0
-
Chuyên đề LTĐH môn Vật lý: Con lắc lò xo dao động điều hòa
3 trang 99 0 0 -
150 câu hỏi trắc nghiệm vật lý
25 trang 82 0 0 -
Bài toán về thời gian, quãng đường ( đáp án trắc nghiệm ) - Đặng Việt Hùng
4 trang 78 0 0 -
Giáo trình Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn (Tập 1): Phần 2
234 trang 57 0 0 -
Bài tập trắc nghiệm Chương 3: Phân cực ánh sáng (Có đáp án)
2 trang 57 0 0 -
Tổng hợp 120 câu hỏi trắc nghiệm hóa học và chuyển hóa Glucid.
25 trang 53 0 0 -
Ôn thi Toán, tiếng Việt - Lớp 5
5 trang 44 0 0 -
thực hành giải toán tiểu học và chuyên đề bồi dưỡng học sinh giỏi: phần 2
50 trang 41 0 0