Danh mục

Phương pháp trình nghiệm nguyên

Số trang: 8      Loại file: pdf      Dung lượng: 89.85 KB      Lượt xem: 19      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu phương pháp trình nghiệm nguyên, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Phương pháp trình nghiệm nguyên PHƯƠNG TRÌNH NGHI M NGUYÊN 1. Phương trình b c nh t hai n ax + by = c Phương trình có nghi m khi và ch khi (a,b) | c gi i phương trình ta tìm m t nghi m riêng (x0,y0) t ó suy ra t t c các  x = x 0 + btnghi m c a phương trình  (t ∈ Z)  y = y 0 − at Ví d . Gi i phương trình 12x + 37y = 2008 Gi i T phương trình ta suy ra y ≡ 4 mod 12, ta ch n y0 = 4 ⇒ x0 = 155.V y nghi m  x = 155 + 37tc a phương trình là  (t ∈ Z)  y = 4 − 12t 2. Phương trình b c nh t ba n ax + by + cz = d gi i phương trình ta ưa v d ng ax + by = d – cz v i (a,b) = 1 r i ch n z =a tùy ý. Ví d . Gi i phương trình 13x + 25y – 41z = 2009 Gi i. Cho z = a ⇒ 13x + 25y = 2009 + 41a (*) phương trình 13x + 25y = 1 có m t nghi m là (2;–1) nên nghi m c a (*) là  x = 2(2009 + 41a) + 25b  (t ∈ Z) ⇒ Nghi m c a phương trình ban u là  y = −(2009 + 41a) − 13b  x = 2(2009 + 41a) + 25b   y = −(2009 + 41a) − 13b (t ∈ Z) z = a  3. Phương trình ax + by + cxy = d b ab Ta ưa v d ng tích x(a + cy) + (a + cy) = d + ⇔ (cx + b)(cy + a) = ab + cd c cT ây ta có cx + b, cy + a là các ư c c a ab + cd Ví d . Gi i phương trình 2x + 5y – 3xy = 1 Gi i x(2 – 3y) – 5/3. (2 – 3y) = 1 – 10/3 ⇔ (3x – 5)(3y – 2) = 7 t ây ta có cácnghi m là (4,1) và (2,3). 4. M t vài phương pháp thư ng s d ng khi gi i phương trình nghi m nguyên 4.1. ưa v t ng các bình phương Ví d . Gi i phương trình x2 – 6xy + 14y2 – 10y – 16 = 0 Gi i. phương trình ⇔ (x – 3y)2 + 5(y – 1)2 = 21 1 ⇒ 5(y – 1)2 ≤ 21 ⇒ (y – 1)2 = 0, 1, 4 (y – 1)2 = 0 ⇒ (x – 3y)2 = 21 (lo i) (y – 1)2 = 1 ⇒ (x – 3y)2 = 16 ta có các nghi m (4,0),(–4,0), (10,2),(2,2) (y – 1)2 = 4 ⇒ ( x – 3y)2 = 1 ta có các nghi m (10,3),(8,3),(–2,–1),(–4,–1) 4.2. ưa v tích s b ng 0. Ví d . Gi i phương trình 6x2 – 10xy + 4y2 + 3x – 2y – 32 = 0 Gi i. Phương trình ⇔ (2x – 2y + 1)(3x – 2y) = 32 Do 2x – 2y + 1 là s l nên 2x – 2y + 1 b ng ± 1 t ây ta có các nghi m (32,32), ( – 30, – 29) 4.3. Dùng các tính ch t chia h t, ng dư. Ví d . Gi i phương trình 3x2 – 2008y2 = 2009 Gi i. Nh n xét n u x ch n thì x ≡ 0 mod 4 còn n u x l thì x2 ≡ 1 mod 4 , t c là m t 2s chính phương ng dư v i 0 ho c 1 modulo 4. Ta th y v trái c a phương trình luôn ng dư v i 0 ho c 3 mod 4 còn v ph i ng dư v i 1 mod 4 như v y phương trình vô nghi m. Ví d . Gi i phương trình x3 + 21y2 + 5 = 0 Gi i. 3 3 2 x ≡ 0, 1, – 1 mod 7 ⇒ x + 21y + 5 ≡ 5, 6, 4 mod 7 ⇒ phương trình vônghi m. Ví d . Gi i phương trình 5x2 + 6x + 11 = y2 + 4y Gi i. Phương trình ⇔ 4x2 + (x + 3)2 + 6 = (y + 2)2 V trái ng dư 2, 3 mod 4, v ph i ng dư 0, 1 mod 4 ⇒ phương trìnhvônghi m Ví d . Gi i phương trình 6x = y2 + y – 2 Gi i. 6x ≡ 1 mod 5 y2 + y – 2 = (y – 1)(y + 2) ≡ 0,3,4 mod 5 ⇒ phương trình vô nghi m Ví d . Gi i phương trình x2 = 2y2 – 8y + 3 Gi i. T phương trình ta th y x ph i l ⇒ x = 2k + 1 ⇒ (2k + 1)2 = 2y2 – 8y + 3 ⇒ 4k2 + 4k + 1 = 2y2 – 8y + 3 ⇒ 2k2 + 2k = y2 – 4y + 1 2k2 + 2k = 2k(k + 1) 4 ⇒ y2 + 1 4 (vô lý) ⇒ phương trình vô nghi m. 4.4. Dùng tính ch t A n < Xn < (A + 2)n ⇒ Xn = (A + 1)n Ví d . Gi i phương trình x3 + x2 + x + 1 = y3 2 Gi i V i x < – 1 hay x > 0 ta có x < y < (x + 1)3 ⇒ phương trình vô nghi m 3 3 V i x = 0 ta có nghi m (0,1) V i x = –1 ta có nghi m ( –1, 0) Ví d . Gi i phương trình x(x + 1)(x + 7)(x + 8) = y2 Gi i. phương trình ⇔ (x2 + 8x)(x2 + 8x + 7) = y2 t m = x2 + 8x ta có m2 + 7m = y2 N u m > 9 thì (m + 3)2 < y2 < (m + 4) ...

Tài liệu được xem nhiều: