Danh mục

Quá trình phân tích thứ bậc mờ (FAHP) và ứng dụng trong lĩnh vực GIS

Số trang: 8      Loại file: pdf      Dung lượng: 895.22 KB      Lượt xem: 12      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: 5,000 VND Tải xuống file đầy đủ (8 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài viết Quá trình phân tích thứ bậc mờ (FAHP) và ứng dụng trong lĩnh vực GIS giới thiệu các vấn đề lý thuyết liên quan đến mô hình AHP, phương pháp phân tích mờ khoảng rộng và lát cắt để tính toán cho mô hình FAHP. Mời các bạn tham khảo.
Nội dung trích xuất từ tài liệu:
Quá trình phân tích thứ bậc mờ (FAHP) và ứng dụng trong lĩnh vực GIS QUÁ TRÌNH PHÂN TÍCH THỨ BẬC MỜ (FAHP) VÀ ỨNG DỤNG TRONG LĨNH VỰC GIS ĐOÀN KHÁNH HOÀNG, NGUYỄN THỊ HỮU PHƢƠNG, TRẦN TRƢỜNG GIANG Trường Đại học Mỏ - Địa chất Tóm tắt: Hiện nay, quy trình phân tích thứ bậc(AHP), với vai trò là một công cụ hỗ trợ ra quyết định đa chỉ tiêu, đã cho thấy nhiều ứng dụng trong thực tế, trong đó có các vấn đề liên quan đến dữ liệu không gian kết hợp với GIS. Tuy nhiên, khi mà tính mờ là một đặc điểm chung của các vấn đề liên quan đến bài toán ra quyết định, quá trình phân tích thứ bậc mờ (FAHP) đã được phát triển để thay thế AHP giải quyết vấn đề này. Bài báo giới thiệu các vấn đề lý thuyết liên quan đến mô hình AHP, phương pháp phân tích mờ khoảng rộng và lát cắt  để tính toán cho mô hình FAHP. Phần cuối bài báo đưa ra một phương pháp kết hợp FAHP và hệ thống thông tin địa lý (GIS) nhằm giải quyết bài toán lựa chọn địa điểm tối ưu. 1 Mở đầu Ngày nay, ở nhiều quốc gia trên thế giới, GIS đã trở thành công cụ trợ giúp quyết định trong hầu hết các hoạt động kinh tế-xã hội, an ninh, quốc phòng, đối phó với thảm hoạ thiên tai v.v... GIS có khả năng trợ giúp các cơ quan chính phủ, các nhà quản lý, các doanh nghiệp, các cá nhân đánh giá đƣợc hiện trạng của các quá trình, các thực thể tự nhiên, kinh tế-xã hội thông qua các chức năng thu thập, quản lý, truy vấn, phân tích và tích hợp các thông tin đƣợc gắn với một nền bản đồ số nhất quán trên cơ sở toạ độ của các dữ liệu bản đồ đầu vào. Một trong những ứng dụng quan trọng mà GIS mang lại là giải quyết bài toán lựa chọn địa điểm tối ƣu (site selection). Để thực hiện đƣợc điều này thông thƣờng ngƣời ra quyết định phải sử dụng các công cụ phân tích dữ liệu của GIS kết hợp với một phƣơng pháp đánh giá hỗ trợ ra quyết định nào đó [6,11,12]. Việc đánh giá các địa điểm đƣa ra để lựa chọn tối ƣu thƣờng phải dựa vào các chuyên gia của lĩnh vực liên quan. Tuy nhiên các đánh giá này cũng nhƣ các dữ liệu thu đƣợc của các địa điểm từ việc phân tích dữ liệu GIS và đem ra so sánh thƣờng có yếu tố không chắc chắn, hay có tính mờ ở trong đó. Vì vậy nếu chỉ đơn thuần sử dụng các phƣơng pháp phân tích đánh giá cổ điển (ví dụ AHP) thì có thể cho ta kết quả không chính xác. Để khắc phục hạn chế trên, cần phải đƣa ra một phƣơng pháp phân tích đánh giá mới mà khi kết hợp với GIS để giải quyết bài toán lựa chọn địa điểm tối ƣu sẽ cho ta kết quá tin cậy hơn. 2 Quá trình phân tích thứ bậc (AHP) AHP do GS. Saaty[9] nghiên cứu và sau đó phát triển từ những năm 80. Đây là một phƣơng pháp tính toán trọng số áp dụng cho các bài toán ra quyết định đa tiêu chuẩn. Quá trình này bao gồm 6 bƣớc chính: 1. Phân rã một tình huống phi cấu trúc thành các phần nhỏ; 2. Xây dựng cây phân cấp AHP; 3. Gán giá trị số cho những so sánh chủ quan về mức độ quan trọng của các chỉ tiêu trong việc ra quyết định. 4. Tính toán trọng số của các chỉ tiêu. 5. Kiểm tra tính nhất quán 6. Tổng hợp kết quả để đƣa ra đánh giá xếp hạng cuối cùng 2.1. Xây dựng cây phân cấp AHP Sau khi trải qua bƣớc 1, phân rã vấn đề thành các thành phần nhỏ, cây phân cấp AHP sẽ đƣợc xây dựng dựa trên các tiêu chí và các khả năng lựa chọn. doankhanhhoang@humg.edu.vn; tel: 0904744590 Mục tiêu X1 X2 A ` X4 X3 B C Hình 1. Cây phân cấp AHP Xi: là các chỉ tiêu xét đến trong quá trình ra quyết định A, B, C: là các khả năng lựa chọn cần quyết định 2.2. Xây dựng ma trận so sánh các chỉ tiêu Việc so sánh này đƣợc thực hiện giữa các cặp chỉ tiêu với nhau và tổng hợp lại thành một ma trận gồm n dòng và n cột (n là số chỉ tiêu). Phần tử aij thể hiện mức độ quan trọng của chỉ tiêu hàng i so với chỉ tiêu cột j. ( ) [ ] Mức độ quan trọng tƣơng đối của chỉ tiêu i so với j đƣợc tính theo tỷ lệ k (k từ 1 đến 9), ngƣợc lại của chỉ tiêu j so với i là 1/k. Nhƣ vậy aij > 0, aij = 1/aji, aii =1. Bảng 1 thể hiện thang điểm so sánh mức độ ƣu tiên (mức độ quan trọng) giữa các chỉ tiêu. 1/9 1/7 Vô Rất ít cùng ít quan quan trọng trọng 1/5 1/3 ít quan trọng nhiều hơn ít quan trọng hơn 1 3 quan trọng nhƣ nhau quan trọng hơn 5 quan trọng nhiều hơn 7 Rất quan trọng hơn 9 Vô cùng quan trọng hơn Bảng 1. Thang điểm so sánh mức độ quan trọng giữa các chỉ tiêu 2.3. Tính toán trọng số Để tính toán trọng số cho các chỉ tiêu, AHP có thể sử dụng các phƣớng pháp khác nhau, hai trong số chúng mà đƣợc sử dụng rộng rãi nhất là Lambda Max (max) [9]và trung bình nhân (geomatric mean)[6] 2.4. Kiểm tra tính nhất quán Vậy có phƣơng pháp nào đánh giá tính hợp lý của các giá trị mức độ quan trọng của các chỉ tiêu? Theo Saaty, ta có thể sử dụng tỷ số nhất quán của dữ liệu (Consistency Ratio - CR). Tỷ số này so sánh mức độ nhất quán với tính khách quan (ngẫu nhiên) của dữ liệu: CI: Chỉ số nhất quán (Consistency Index) RI: Chỉ số ngẫu nhiên (Random Index) n: số chỉ tiêu Đối với mỗi một ma trận so sánh cấp n, Saaty[9] đã thử nghiệm tạo ra các ma trận ngẫu nhiên và tính ra chỉ số RI (chỉ số ngẫu nhiên) tƣơng ứng với các cấp ma trận nh ...

Tài liệu được xem nhiều:

Tài liệu liên quan: