Short-term forecasting of electrical load demand in Hanoi based on extreme learning machine model
Số trang: 10
Loại file: pdf
Dung lượng: 927.72 KB
Lượt xem: 6
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Accurate forecasting of the electrical load is a critical element for grid operators to make well-informed decisions concerning electricity generation, transmission, and distribution. In this study, an Extreme Learning Machine (ELM) model was proposed and compared with four other machine learning models including Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).
Nội dung trích xuất từ tài liệu:
Short-term forecasting of electrical load demand in Hanoi based on extreme learning machine model
Nội dung trích xuất từ tài liệu:
Short-term forecasting of electrical load demand in Hanoi based on extreme learning machine model
Tìm kiếm theo từ khóa liên quan:
Short-term forecasting Load forecasting Extreme learning machine Machine learning Single-hidden-layer feedforward neural networks Gated recurrent unitGợi ý tài liệu liên quan:
-
9 trang 186 0 0
-
Nuclear energy system's behavior and decision making using machine learning
8 trang 107 0 0 -
95 trang 61 0 0
-
Bài giảng Trí tuệ nhân tạo dành cho mọi người - ThS. Nguyễn Ngọc Tú
149 trang 49 0 0 -
Ebook Disrupting finance: FinTech and strategy in the 21st century
194 trang 49 0 0 -
Knowledge management system building blocks
12 trang 43 0 0 -
Pseudorandom sequences classification algorithm
8 trang 38 0 0 -
Building credit scoring process in Vietnamese commercial banks using machine learning
14 trang 38 0 0 -
Phát hiện tin giả với python và machine learning
14 trang 35 0 0 -
Ebook The data science design manual: Part 2
240 trang 34 0 0