Thông tin tài liệu:
Tham khảo tài liệu tài liệu matlap toàn tập_2, công nghệ thông tin, kỹ thuật lập trình phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tài liệu matlap toàn tập_2 26x= Columns 1 through 7 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850 Columns 8 through 11 2.1991 2.5133 2.8274 3.1416+) T¹o m¶ng gåm c¸c phÇn tö cña x b»ng hµm linspace. Có ph¸p cña hµm nµy nh− sau: linspace(gi¸ trÞ phÇn tö ®Çu, gi¸ trÞ phÇn tö cuèi, sè c¸c phÇn tö)vÝ dô>> x = linspace(0,pi,11)x= Columns 1 through 7 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850 Columns 8 through 11 2.1991 2.5133 2.8274 3.1416 C¸ch thø nhÊt gióp ta t¹o m¶ng mµ chØ cÇn vµo kho¶ng c¸ch gi¸ trÞ gi÷a c¸c phÇn tö (kh«ng cÇnbiÕt sè phÇn tö), cßn c¸ch thø hai ta chØ cÇn vµo sè phÇn tö cña m¶ng (kh«ng cÇn biÕt kho¶ng c¸ch gi¸trÞ gi÷a c¸c phÇn tö). Ngoµi c¸c m¶ng trªn, MATLAB cßn cung cÊp m¶ng kh«ng gian theo logarithm b»ng hµmlogspace. Có ph¸p cña hµm logspace nh− sau: logspace(sè mò ®Çu, sè mò cuèi, sè phÇn tö)vÝ dô:>> logspace(0,2,11)ans= Columns 1 through 7 1.0000 1.5849 2.5119 3.9811 6.3096 10.0000 15.8489 Columns 8 though 11 25.1189 39.8107 63.0957 100.0000T¹o m¶ng, gi¸ trÞ b¾t ®Çu t¹i 100, gi¸ trÞ cuèi lµ 100, chøa 11 gi¸ trÞ C¸c m¶ng trªn lµ c¸c m¶ng mµ c¸c phÇn tö cña nã ®−îc t¹o lªn theo mét quy luËt nhÊt ®Þnh.Nh−ng ®«i khi m¶ng ®−îc yªu cÇu, nã kh«ng thuËn tiÖn t¹o c¸c phÇn tö b»ng c¸c ph−¬ng ph¸p trªn,kh«ng cã mét mÉu chuÈn nµo ®Ó t¹o c¸c m¶ng nµy. Tuy nhiªn ta cã thÓ t¹o m¶ng b»ng c¸ch vµo nhiÒuphÇn tö cïng mét lócVÝ dô>> a = 1:5,b = 1:2:9a= 1 2 3 4 5b= 1 3 5 7 9>> c = [a b]1 2 3 4 5 1 3 5 7 9ë vÝ dô trªn ta ®· t¹o hai m¶ng thµnh phÇn lµ a vµ b sau ®ã t¹o m¶ng c b»ng c¸ch ghÐp hai m¶ng a vµb.Ta còng cã thÓ t¹o m¶ng nh− sau: 27>> d=[a(1:2:5) 1 0 1]d= 1 3 5 1 0 1a lµ m¶ng gåm c¸c phÇn tö [1 3 5], m¶ng d lµ m¶ng gåm c¸c phÇn tö cña a vµ ghÐp thªm c¸cphÇn tö [1 0 1] Tãm l¹i ta cã b¶ng cÊu tróc c¸c m¶ng c¬ b¶n:x=[ 2 2*pi sqrt(2) 2-3j ] T¹o vector hµng x chøa c¸c phÇn tö ®Æc biÖt.x= first : last T¹o vector hµng x b¾t ®Çu t¹i first, phÇn tö sau b»ng phÇn tö tr−íc céng víi 1, kÕt thóc lµ phÇn tö cã gi¸ trÞ b»ng hoÆc nhá h¬n last .x= first : increment : last T¹o vector hµng x b¾t ®Çu t¹i fist, gi¸ trÞ céng lµ increment, kÕt thóc lµ phÇn tö cã gi¸ trÞ b»ng hoÆc nhá h¬n last.x= linspace(fist, last, n) T¹o vector hµng x b¾t ®Çu t¹i first, kÕt thóc lµ last, cã n phÇn tö.x= logspace(first, last, n) T¹o vector hµng kh«ng gian logarithm x b¾t ®Çu t¹i 10first, kÕt thóc t¹i 10last, cã n phÇn tö.6.4 Vector hµng vµ vector cét Trong c¸c vÝ dô tr−íc, m¶ng chøa mét hµng vµ nhiÒu cét, ng−êi ta th−êng gäi lµ vector hµng.Ngoµi ra ta cßn cã m¶ng lµ vector cét, tøc lµ m¶ng cã mét cét vµ nhiÒu hµng, trong tr−êng hîp nµy tÊtc¶ mäi thao t¸c vµ tÝnh to¸n ®èi víi m¶ng nh− ë trªn lµ kh«ng thay ®æi. Tõ c¸c hµm t¹o m¶ng minh ho¹ ë phÇn tr−íc (tÊt c¶ ®Òu t¹o vector hµng), cã nhiÒu c¸ch ®Ó t¹ovector cét. Mét c¸ch trùc tiÕp ®Ó t¹o vector cét lµ vµo tõng phÇn tö cña m¶ng nh− vÝ dô sau:>> c = [1;2;3;4;5]c= 1 2 3 4 5 Kh¸c víi tr−íc lµ ta dïng dÊu c¸ch hay dÊu phÈy ®Ó ph©n c¸ch gi÷a hai cét cña vector hµng.Cßn ë vÝ dô nµy ta dïng dÊu chÊm phÈy ®Ó ph©n c¸ch gi÷a hai hµng cña vector cét. Mét c¸ch kh¸c ®Ó t¹o c¸c vector cét lµ dïng c¸c hµm linspace, logspace, hay tõ c¸c vectorhµng, sau ®ã dïng ph−¬ng ph¸p chuyÓn vÞ. MATLAB dïng to¸n tö chuyÓn vÞ lµ ( ) ®Ó chuyÓn tõvector hµng thµnh vector cét vµ ng−îc l¹i.VÝ dô t¹o mét vector a vµ vector b lµ chuyÓn vÞ cña vector a, vector c lµ chuyÓn vÞ cña vector b:>> a= 1:5a= 1 2 3 4 5>> b= ab= 1 2 3 28 4 5>> c= bc= 1 2 3 4 5 Ngoµi ra MATLAB cßn sö dông to¸n tö chuyÓn víi dÊu chÊm ®»ng tr−íc ( . ) ( to¸n tö chuyÓn vÞchÊm). To¸n tö nµy chØ kh¸c víi to¸n tö chuyÓn vÞ ( ) khi c¸c phÇn tö cña m¶ng lµ sè phøc, tøc lµ tõmét vector nguån víi c¸c phÇn tö lµ sè phøc, to¸n tö ( ) t¹o ra vector ph ...