Tài liệu toán Hệ phương trình đẳng cấp
Số trang: 3
Loại file: pdf
Dung lượng: 62.11 KB
Lượt xem: 9
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu tài liệu toán " hệ phương trình đẳng cấp ", tài liệu phổ thông phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tài liệu toán " Hệ phương trình đẳng cấp " Baøi 4: 3 + 2t + t 2 11 5 (1) chia (2): 2 = ⇔ 16t 2 − 12t − 40 = 0 ⇔ t = 2 ∨ t = − 1 + 2t + t 17 4 HEÄ PHÖÔNG TRÌNH ÑAÚNG CAÁP . t = 2 : (2) ⇔ x 2 .11 = 11 ⇔ x 2 = 1 ⇔ x = ±1 ⇒ y = 2x = ±2I. KIEÁN THÖÙC CAÀN NHÔÙ 5 4 3 5 5 3 . t = − : (2) ⇔ 3x 2 = 16 ⇔ x = ± ⇒y=− x=∓ 4 3 4 3 ⎧f(x,y) = a ⎧f(tx,ty) = t 2 f(x,y) ⎪ ⎛4 3 5 3⎞ ⎛ 4 3 5 3⎞1. Daïng: ⎨ vôùi ⎨ Toùm laïi coù 4 nghieäm: (1, 2), (-1, -2), ⎜ ,− ⎟ ,⎜ − , ⎟ ⎩ g(x,y) = b 2 ⎪g(tx,ty) = t g(x,y) ⎜ 3 3 ⎟⎜ 3 3 ⎟ ⎩ ⎝ ⎠⎝ ⎠2. Caùch giaûi: ⎧3x 2 + 2xy + y2 = 11 ⎪* Tìm nghieäm thoûa x = 0 (hay y = 0) 2. Ñaët 17 + m = k. Heä ⇔ ⎨ 2 2* vôùi x ≠ 0 ( hay y ≠ 0 ), ñaët y = tx (hay x = ty ) ⎪x + 2xy + 3y = k ⎩ ⎧ax 2 + bxy + cy 2 + d = 0 ⎧x 2 (3 + 2t + t 2 ) = 11 (4) ⎪ ⎪ Ñaët y = tx ⇒ Heä: ⎨* Ñoái vôùi heä ⎨ 2 2 2 2 ⎪a1x + b1xy + c1y + d1 = 0 ⎪x (1 + 2t + 2t ) = k (5) ⎩ ⎩Ta coù theå khöû y2 (hay x2) roài tính y theo x ( hay x theo y) roài thay vaøo (4) 3 + 2t + t 2 11 : = ⇔ (k − 33)t 2 + 2(k − 11)t + 3k − 11 =moät trong 2 phöông trình cuûa heä. (5) 1 + 2t + 3t 2 k * k = 33: ⇒ m = 16, phöông trình (6) coù nghieäm t = - 2II. CAÙC VÍ DUÏ: * k ≠ 33 : (6) coù nghieäm:Ví duï 1: ⇔ ∆ = (k − 11)2 − (k − 33)(3k − 11) ≥ 0 = k 2 − 44k + 121 ≤ 0 ⎧3x 2 + 2xy + y2 = 11 ⎪Cho heä phöông trình: ⎨ ⇔ 22 − 11 3 ≤ k ≤ 22 + 11 3 2 2 ⎪x + 2xy + 3y = 17 + m ⎩ vôùi k = m + 17.1. Giaûi heä phöông trình vôùi m = 0 ⇔ 22 − 11 3 ≤ m + 17 ≤ 22 + 11 32. Vôùi nhöõng giaù trò naøo cuûa m thì heä coù nghieäm ? ⇔ 5 − 11 3 ≤ m ≤ 5 + 11 3 (ÑH Kinh Teá TPHCM naêm 1998, Khoái A) Ví ...
Nội dung trích xuất từ tài liệu:
Tài liệu toán " Hệ phương trình đẳng cấp " Baøi 4: 3 + 2t + t 2 11 5 (1) chia (2): 2 = ⇔ 16t 2 − 12t − 40 = 0 ⇔ t = 2 ∨ t = − 1 + 2t + t 17 4 HEÄ PHÖÔNG TRÌNH ÑAÚNG CAÁP . t = 2 : (2) ⇔ x 2 .11 = 11 ⇔ x 2 = 1 ⇔ x = ±1 ⇒ y = 2x = ±2I. KIEÁN THÖÙC CAÀN NHÔÙ 5 4 3 5 5 3 . t = − : (2) ⇔ 3x 2 = 16 ⇔ x = ± ⇒y=− x=∓ 4 3 4 3 ⎧f(x,y) = a ⎧f(tx,ty) = t 2 f(x,y) ⎪ ⎛4 3 5 3⎞ ⎛ 4 3 5 3⎞1. Daïng: ⎨ vôùi ⎨ Toùm laïi coù 4 nghieäm: (1, 2), (-1, -2), ⎜ ,− ⎟ ,⎜ − , ⎟ ⎩ g(x,y) = b 2 ⎪g(tx,ty) = t g(x,y) ⎜ 3 3 ⎟⎜ 3 3 ⎟ ⎩ ⎝ ⎠⎝ ⎠2. Caùch giaûi: ⎧3x 2 + 2xy + y2 = 11 ⎪* Tìm nghieäm thoûa x = 0 (hay y = 0) 2. Ñaët 17 + m = k. Heä ⇔ ⎨ 2 2* vôùi x ≠ 0 ( hay y ≠ 0 ), ñaët y = tx (hay x = ty ) ⎪x + 2xy + 3y = k ⎩ ⎧ax 2 + bxy + cy 2 + d = 0 ⎧x 2 (3 + 2t + t 2 ) = 11 (4) ⎪ ⎪ Ñaët y = tx ⇒ Heä: ⎨* Ñoái vôùi heä ⎨ 2 2 2 2 ⎪a1x + b1xy + c1y + d1 = 0 ⎪x (1 + 2t + 2t ) = k (5) ⎩ ⎩Ta coù theå khöû y2 (hay x2) roài tính y theo x ( hay x theo y) roài thay vaøo (4) 3 + 2t + t 2 11 : = ⇔ (k − 33)t 2 + 2(k − 11)t + 3k − 11 =moät trong 2 phöông trình cuûa heä. (5) 1 + 2t + 3t 2 k * k = 33: ⇒ m = 16, phöông trình (6) coù nghieäm t = - 2II. CAÙC VÍ DUÏ: * k ≠ 33 : (6) coù nghieäm:Ví duï 1: ⇔ ∆ = (k − 11)2 − (k − 33)(3k − 11) ≥ 0 = k 2 − 44k + 121 ≤ 0 ⎧3x 2 + 2xy + y2 = 11 ⎪Cho heä phöông trình: ⎨ ⇔ 22 − 11 3 ≤ k ≤ 22 + 11 3 2 2 ⎪x + 2xy + 3y = 17 + m ⎩ vôùi k = m + 17.1. Giaûi heä phöông trình vôùi m = 0 ⇔ 22 − 11 3 ≤ m + 17 ≤ 22 + 11 32. Vôùi nhöõng giaù trò naøo cuûa m thì heä coù nghieäm ? ⇔ 5 − 11 3 ≤ m ≤ 5 + 11 3 (ÑH Kinh Teá TPHCM naêm 1998, Khoái A) Ví ...
Tìm kiếm theo từ khóa liên quan:
Tài liệu toán Hệ phương trình đẳng cấp khoa học tự nhiện toán học hệ phương trìnhGợi ý tài liệu liên quan:
-
176 trang 276 3 0
-
14 trang 97 0 0
-
Giáo án Đại số lớp 9 (Học kì 2)
81 trang 47 0 0 -
Tổng hợp nano ZnO sử dụng làm điện cực âm trong nguồn điện bạc - kẽm
5 trang 45 0 0 -
Cấu tạo từ của hệ thống số đếm trong các ngôn ngữ (những bài toán trong các con số)
13 trang 44 0 0 -
Tuyển tập các bài toán từ đề thi chọn đội tuyển các tỉnh-thành phố năm học 2018-2019
55 trang 41 0 0 -
Công phá môn Toán 8+ đề thi vào lớp 10
270 trang 37 0 0 -
Chuyên đề Hệ phương trình Toán 11
151 trang 37 0 0 -
Bài giảng Toán cao cấp - Vũ Khắc Bảy
136 trang 36 0 0 -
31 trang 36 0 0