Danh mục

thiết kế bộ biến tần truyền thông ba pha điều khiển động cơ, chương 9

Số trang: 7      Loại file: pdf      Dung lượng: 205.53 KB      Lượt xem: 18      Lượt tải: 0    
Jamona

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Phương pháp điều chế vectơ không gian khác với các phương pháp điều chế độ rộng xung khác. Với phương pháp điều chế PWM khác, bộ nghịch lưu được xem như ba bộ biến đổi đẩy kéo riêng biệt với ba điện áp pha độc lập nhau. Đối với phương pháp điều chế vectơ không gian, bộ nghịch lưu được xem như một khối duy nhất với 8 trạng thái đóng ngắt từ 0 đến 7. 4.1.2.1. Thành lập vectơ không gian Đối với nguồn áp ba pha cân bằng, ta luôn có phương trình sau:Và bất kỳ ba hàm...
Nội dung trích xuất từ tài liệu:
thiết kế bộ biến tần truyền thông ba pha điều khiển động cơ, chương 9 Chương 9: Phương pháp điều chế vectơ không gian (SVPWM) Phương pháp điều chế vectơ không gian khác với các phươngpháp điều chế độ rộng xung khác. Với phương pháp điều chếPWM khác, bộ nghịch lưu được xem như ba bộ biến đổi đẩy kéoriêng biệt với ba điện áp pha độc lập nhau. Đối với phương phápđiều chế vectơ không gian, bộ nghịch lưu được xem như một khốiduy nhất với 8 trạng thái đóng ngắt từ 0 đến 7. 4.1.2.1. Thành lập vectơ không gian Đối với nguồn áp ba pha cân bằng, ta luôn có phương trình sau: u a (t)  u b (t)  u c ( t )  0 (3-5) Và bất kỳ ba hàm số nào thỏa mãn phương trình trên đều có thểchuyển sang hệ tọa độ hai chiều vuông góc. Ta có thể biểu diễnphương trình trên dưới dạng ba vectơ gồm [ua 0 0]T, trùng với trụcx, vectơ [0 ub 0]T lệch một góc 120o và vectơ [0 0 ua]T lệch một góc240o so với trục x, như hình vẽ sau: Hình 3-6: biểu diễn vectơ không gian trong hệ tọa độ x0y Từ đó ta xây dựng được phương trình của vectơ không giantrong hệ tọa độ phức như sau: 2 2 j  j   2 u(t)   u a  u b .e  u c .e 3  3 3  (3-6) Trong đó 2/3 là hệ số biến hình. Phân tích u(t) trong phươngtrình trên thành phần thực và phần ảo. u t  u x  ju y (3-7) Ta xây dựng được công thức chuyển đổi hệ tọa độ từ ba pha abcsang hệ tọa độ phức x-y bằng cách cân bằng phần thực và phần ảotrong phương trình (3-6), ta có: 2 u(t)   u a  u b  cos(2 / 3)  jsin(2 / 3)   u c  cos( 2 / 3)  jsin(2 / 3)   3   2 u x  3  u a  u b cos(2 / 3)  u ccos( 2 / 3)    (3- 2 u   u sin(2 / 3)  u sin( 2 / 3)   y 3 b  c  1 1   ux  2  1  2  2   ua      ub   uy  3  0 3 3         uc   2 2  8) Tiếp theo hình thành tọa độ quay α-β bằng cách cho hệ tọa độ x-y quay với vận tốc góc ωt. Ta có công thức chuyển đổi hệ tọa độnhư sau:     u    cos(t) cos( 2  t)   u x   cos(t)  sin(t)   u x           u    sin(t) cos(   t)   u y   sin(t) cos(t)   u y     2  (3-9) Nguồn áp ba pha tạo ra là cân bằng và sin nên ta có thể viết lạiphương trình điện áp pha như sau: u a  Vmsin(t) u b  Vmsin(t  2 / 3) u c  Vmsin(t  2 / 3) (3-10) Từ phương trình (3-9) ta xây dựng được phương trình sau: u(t)  Vr e j  Vr e jt (3-11) Thể hiện vectơ không gian có biên độ Vr quay với vận tốc gócωt quanh gốc tọa độ 0. Phương trình điện áp dây theo phương trình(3-8) như sau:  1 1  1  2   q1   VL  2 3 2     V  q3 (3-  VL  3 2 s  3 3     0    q5   2 2  11) Trong đó 2 để chuyền từ giá trị biên độ sang giá trị hiệu dụng, 3 để chuyển giá trị điện áp pha thành điện áp dây. Vectơ điện ápdây sẽ sớm pha hơn vectơ điện áp pha một góc π/6. Nếu lồng ghépcác trạng thái có thể có của q1, q3 và q5 vào phương trình (3-11) tathu được phương trình điện áp dây (trị biên độ) theo các trạng tháicủa các khóa. 2. 2 j( 2n 1) /6 2   (2n  1)   (2n  1)   Vn  e   cos    jsin  ...

Tài liệu được xem nhiều: