Danh mục

Thiết kế chương trình_Chương 1

Số trang: 18      Loại file: pdf      Dung lượng: 1.76 MB      Lượt xem: 13      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 7,000 VND Tải xuống file đầy đủ (18 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Một hệ thống thông tin gồm có máy phát, kênh truyền và máy thu. Ở máy phát tín hiệu được điều chế theo phương pháp BPSK, QPSK và qua bộ lọc băng thông, rồi phát đi. Tín hiệu đến máy thu sau khi qua kênh truyền có các loại nhiễu
Nội dung trích xuất từ tài liệu:
Thiết kế chương trình_Chương 1Phaàn 4_Chöông 1 : Thieát keá chöông trìnhCHÖÔNG 1 THIEÁT KEÁ CHÖÔNG TRÌNH1. MOÂ PHOÛNG ÑÖÔØNG TRUYEÀNM oät heä thoáng thoâng tin goàm coù maùy phaùt, keânh truyeàn vaø maùy thu. ÔÛ maùy phaùt, tín hieäu ñöôïc ñieàu cheá theo phöông phaùp BPSK, QPSK vaø qua boä loïc baêng thoâng, roài phaùt ñi. Tín hieäu ñeán maùy thu sau khi qua keânh truyeàn coù caùc loaïi nhieãu : nhieãu traéng, fading, nhieãu ñoàng keânh. Ñeå coù ñöôïc döõ lieäu ban ñaàu, tín hieäu thu phaûi ñiqua boä giaûi ñieàu cheá, loïc thoâng thaáp, roài ñeán boä quyeát ñònh.Sô ñoà khoái cuûa moät heä thoáng thoâng tin :2. MOÂ PHOÛNG BOÄ CAÂN BAÈNG SÖÛ DUÏNG NEURAL NETWORKSDo treân keânh truyeàn xuaát hieän nhieàu loaïi nhieãu gaây aûnh höôûng ñeán tín hieäu thu, neân döõ lieäuthu ñöôïc seõ bò sai. Coù raát nhieàu kyõ thuaät trieät nhieãu ñaõ ñöôïc ñeà caäp trong phaàn lyù thuyeát,nhöng trong luaän vaên naøy chæ ñeà caäp ñeán kyõ thuaät söû duïng boä caân baèng. Thöïc teá ngöôøi ta ñaõaùp duïng nhieàu loaïi caân baèng khaùc nhau ñeå xöû lyù tín hieäu, tuy nhieân trong phaïm vi cuûa ñeà taøitoát nghieäp chuùng em chæ moâ phoûng boä caân baèng söû duïng Neural Networks. Phaàn lyù thuyeát treânñaõ neâu raát roõ caùc loaïi maïng coù trong Neural Networks :• Maïng Perceptron : Haøm truyeàn cuûa caùc neuron laø haøm naác raát gioáng nhö neuron sinh hoïc nhöng thöïc teá raát ít khi söû duïng trong maïng trí tueä nhaân taïo do khi qua moãi neuron, tính chaát cuûa tín hieäu khoâng coøn chính xaùc.• Maïng tuyeán tính : Maïng naøy gioáng nhö Perceptron nhöng haøm truyeàn laø haøm tuyeán tính cho ngoõ ra coù giaù trò khoâng giôùi haïn, chæ giaûi quyeát nhöõng vaán ñeà ñoäc laäp tuyeán tính, coùLeâ Thanh Nhaät-Tröông AÙnh Thu 162 GVHD :Ths. Hoaøng Ñình ChieánPhaàn 4_Chöông 1 : Thieát keá chöông trình quy luaät huaán luyeän LMS maïnh hôn quy luaät huaán luyeän Peceptron. Maïng tuyeán tính coù khaû naêng ñaùp öùng söï thay ñoåi cuûa moâi tröôøng, ñöôïc ñieàu chænh theo töøng böôùc döïa treân vector vaøo môùi vaø vector mong muoán ñeå tìm ñöôïc caùc giaù trò troïng soá vaø ngöôõng thích hôïp sao cho toång bình phöông sai soá nhoû nhaát. Maïng loaïi naøy thöôøng ñöôïc söû duïng trong nhöõng boä loïc, nhöõng heä thoáng ñieàu khieån vaø xöû lyù tín hieäu soá. Ñaây laø loaïi maïng ñôn giaûn nhaát coù theå aùp duïng trong thöïc teá.• Maïng Backpropagation : Backpropagation thöïc hieän döïa treân quy luaät hoïc Widrow-Hoff toång quaùt hoùa cho maïng ña lôùp vaø caùc haøm truyeàn phi tuyeán khaùc nhau. Maïng coù ngöôõng, moät lôùp sigmoid vaø moät lôùp tuyeán tính ngoõ ra coù theå moâ phoûng baát kyø haøm naøo vôùi soá maãu rôøi raïc höõu haïn. Maïng naøy ñöôïc huaán luyeän chính xaùc seõ cho ñaùp öùng hôïp lyù khi ñöa ngoõ vaøo chöa töøng ñöôïc huaán luyeän. Thoâng thöôøng tín hieäu môùi vaøo coù ngoõ ra töông töï vôùi ngoõ ra chính xaùc cuûa tín hieäu vaøo ñaõ ñöôïc huaán luyeän gioáng vôùi ngoõ vaøo môùi naøy. Do tính chaát toång quaát hoùa naøy, ta coù theå huaán luyeän maïng döïa treân caùc caëp vaøo/ra ñaïi dieän maø vaãn cho keát quaû toát ñoái vôùi caùc tín hieäu chöa ñöôïc huaán luyeän.• Maïng Radial Basis : Maïng Radial Basis yeâu caàu nhieàu neuron hôn maïng Backpropagation feedforward chuaån, nhöng thöôøng thieát keá ít toán thôøi gian hôn maïng feedforward chuaån. Maïng naøy seõ hoaït ñoäng toát khi coù nhieàu vector huaán luyeän. Chính ñieàu naøy giôùi haïn maïng Radial Basis trong vieäc öùng duïng vaøo boä caân baèng. Ñoàng thôøi soá neuron Radial Basis tæ leä vôùi kích thöôùc khoâng gian ngoõ vaøo vaø ñoä phöùc taïp cuûa vaán ñeà neân maïng Radial Basis lôùn hôn maïng Backpropagation. Maïng Radial Basis hoaït ñoäng chaäm vì coù quaù nhieàu pheùp tính, toán nhieàu khoâng gian. Do ñoù, trong luaän vaên naøy khoâng moâ phoûng maïng Radial Basis. Maïng Radial Basis chæ phuø hôïp cho vaán ñeà phaân loaïi.• Maïng hoài tieáp : Maïng hoài tieáp chöùa caùc keát noái ngöôïc trôû veà caùc neuron tröôùc ñoù. Maïng naøy coù theå chaïy khoâng oån ñònh vaø dao ñoäng raát phöùc taïp. Maïng hoài tieáp raát ñöôïc caùc nhaø nghieân cöùu quan taâm nhöng khoâng coù hieäu quaû trong vieäc giaûi quyeát caùc vaán ñeà thöïc teá.• Maïng Seft-Organnizing : Maïng coù khaû naêng hoïc, tìm ra quy luaät vaø caùc töông quan ôû ngoõ vaøo vaø ñöa ra caùc ñaùp öùng coù ngoõ vaøo töông öùng. Caùc neuron cuûa maïng hoïc nhaän ra caùc nhoùm vector ngoõ vaøo gioáng nhau, töï saép xeáp ñeå nhaän bieát taàn suaát xuaát hieän cuûa caùc vector ñaàu vaøo ñöôïc ñöa tôùi. Do ñoù maïng Seft-Organizing duøng ñeå phaân loaïi caùc vector trong khoâng gian ngoõ nhaäp, thích hôï ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: