Danh mục

Thuật toán quy hoạch động cho bài toán lập lịch tối ưu.

Số trang: 7      Loại file: pdf      Dung lượng: 4.13 MB      Lượt xem: 12      Lượt tải: 0    
Thư viện của tui

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Thuật toán quy hoạch động cho bài toán lập lịch tối ưu.Rõ ràng, Điều khiển học là Khoa học về sự vận động của vật chất. Điều khiển học quan tâm tới những thuộc tính hoặc những thành phần cụ thể của mọi loại hệ thống vật chất có biểu hiện rất khác nhau như mạch điện, bộ não, xã hội... và tìm kiếm những quy luật chung của sự vận động ở các hệ thống vật chất này.
Nội dung trích xuất từ tài liệu:
Thuật toán quy hoạch động cho bài toán lập lịch tối ưu. T,!-pchi Tin hgc va Dieu khi€n hoc, T.18, S.l (2002), 15-21 SOME PROPERTIES OF CHOICE FUNCTIONS BINA RAMAMURTHY, VU NGHIA, VU DUC THIAbstract. The family of functional dependencies plays an important role in the relational database. Themain .goal of this paper is to investigate choice functions. They are equivalent descriptions of family offunctional dependencies. In this paper, we give some main properties related to the composition of choicefunctions.T6m t~t. H9 cac phu thuoc ham dong vai tro quan trong trong CO sO-dir li~u quan h~. Muc Wlu cda cluingtoi Ill. nghien C1111 vecac ham chon. Cac ham chon Ill. cac mo ta tuong dirong cda ho cac phu thuoc ham.Trongbal bao nay chiing tc5itrlnh bay m9t so cac tinh cMt co-bin lien quan dgn cac ham chon. 1. INTRODUCTION The motivation of this study is equivalent descriptions of family of functional dependencies (FDs).FDs play an significant role in the implementations of relational database model, which was defined byE. F. Codd. Up to now, many kinds of databases have been studied, such as object oriented database,deductive database, distributed database, inconsistent database ... For details, see [18] [19], [1], [20]and [17]. However, relational database is still one of the most powerful databases. One of the mostimportant branches in the theory of relational database is that dealing with the design of databaseschemes. This branch is based on the theory of FDs and constraints. Armstrong observed that FDsgive rise to closure operations on the set of attributes. And he shows that closure operation is anequivalent description of family of FDs, that is, the family of all FDs satisfying Armstrong axiomstated in next section. That the family of FDs can be described by closure operations on the at-tributesset plays a very important role in theory of relational database. Because this representationwas successfully applied to find many properties of FDs, studying those properties of closure opera-tions is indirect way of finding that of the family of FDs. Besides closure operations, there are someother representations of family of FDs. Such as, the closed sets of a closure form a semilattice. Andthe semilattice with greatest elements give an equivalent description of FDs. The closure operations,and other equivalent descriptions of family of FDs have been studied widely by Armstrong [2], Beeri,Dowd, Fagin and Statman [4], Mannila and Raiha [16]. 2. BASIC DEFINITIONS Let us give some formal definitions that are used in the next sections. Those well-known conceptsin relational database given in this section can be found in [2], [3], [4], [8], [10] and [20]. A relationaldatabase system of the scheme R( al, ... ,an) is considered as a table, where columns correspond to theattributes ais while the row are n-tuples of relation r. Let X and Y be nonempty sets of attributesin R. We say that instance r of R satisfies the FD if two tuples agree on the values in attributes X,they must also agree on the values in attributes Y. Here is the formal mathematical definition ofFDs.Definition 2.1. Let U = {al ... , an} be a nonempty finite set of attributes. A functional dependencyis a statement of the form A -+ B, where A, B ~ U. The FD A -+ B holds in a relation R ={hl ... , hm} over U if Vhi, hj E R we have hda) = hj(a) for all a E A implies hdb) = hj(b) for all .sbE B. We also say that R satisfies the FD A -+ B. Let FR be a family of all FDs that hold in R.16 BINA RAMAMURTHY, VU NGHIA, VU Due THIDefinition 2.2. Then F = FR satisfies(1) A -+ A E E;(2) (A -+ B E F, B -+ C E F) * (A -+ C E F)j(3) (A -+ BF, A ~ C, D ~ B) * (C -+ D E F)j(4) (A -+ B E F, C -+ D E F) * (A u C -+ BuD E F). A family of FDs satisfying (1)-(4) is called an f-family over U. Clearly, FR is an f-family over U. It is known [2] that if F is an arbitrary f-family, then thereis a relation Rover U such that FR = F. Given a family F of FDs over U, there exists a unique minimal f-family F+ that contains F. Itcan be seen that F+ contains all FDs which can be derived from F by the rules (1)-(4).Definition 2.3. A relation scheme s is a pair (U, F), where U is a set of attributes, and F is a setof FDs over U. Denote A-t = {a: A -+ {a} E F+}. A+ is called the closure of A over s. It is clear that A -+ B E F+ iff B ~ A+ . Clearly, if s = (U, F) is a relation scheme, then there is a relation Rover U such that FR = F+(see [2]).Definition 2.4. Let U be a nonempty finite se ...

Tài liệu được xem nhiều: