Danh mục

Toán 12: Khoảng đồng biến nghịch biến của hàm số-P1 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương

Số trang: 1      Loại file: pdf      Dung lượng: 191.92 KB      Lượt xem: 12      Lượt tải: 0    
Jamona

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (1 trang) 0
Xem trước 1 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu "Toán 12: Khoảng đồng biến nghịch biến của hàm số-P1 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương" tóm lược các kiến thức để giúp các bạn có thể nắm vững kiến thức phần khoảng đồng biến nghịch biến của hàm số. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Toán 12: Khoảng đồng biến nghịch biến của hàm số-P1 (Tài liệu bài giảng) - GV. Lê Bá Trần PhươngKhóa học Toán 12 – Thầy Lê Bá Trần Phương Khoảng đồng biến, nghịch biến của hàm số KHOẢNG ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ (Phần 01) TÀI LIỆU BÀI GIẢNG Giáo viên: LÊ BÁ TRẦN PHƢƠNG Đây là tài liệu tóm lược các kiến thức đi kèm với bài giảng Khoảng đồng biến nghịch biến của hàm số thuộc khóa học Toán 12 – Thầy Lê Bá Trần Phương tại website Hocmai.vn. Để có thể nắm vững kiến thức phần Khoảng đồng biến nghịch biến của hàm số, Bạn cần kết hợp xem tài liệu cùng với bài giảng này. 1. Nhắc lại định nghĩa Giả sử K là một khoảng, 1 đoạn hoặc nửa khoảng và hàm số y f ( x) xác định trên K. - Hàm số được gọi là đồng biến trên K nếu x tăng thì y tăng mà x giảm thì y giảm. - Hàm số được gọi là nghịch biến trên K nếu x tăng thì y giảm mà x giảm thì y tăng. Chú ý: - Nếu hàm số y f ( x) đồng biến trên K thì đồ thị sẽ đi lên theo hướng từ trái sang phải. - Nếu hàm số y f ( x) đồng biến trên K thì đồ thị sẽ đi xuống theo hướng từ trái sang phải. - Nếu hàm số đồng biến sẽ kí hiệu Nếu hàm số nghịch biến sẽ kí hiệu 2. Dấu hiệu nhận biết tính đồng biến, nghịch của hàm số Định lý: Cho hàm số y f ( x) có đạo hàm trên K - Nếu y’ > 0 trên K thì hàm số đồng biến trên K. - Nếu y’ < 0 trên K thì hàm số nghịch biến trên K. 3. Quy tắc tìm khoảng đồng biến, nghịch biến của hàm số (khoảng đơn điệu) của hàm số y f ( x) . Bước 1: Tìm tập xác định Bước 2: Tìm các điểm xi (i 1,2,..., n) làm cho y’ = 0 hoặc y’ không xác định (nếu có) Bước 3: Lập bảng xét dấu Bước 4: Kết luận Chú ý: Tìm khoảng đồng biến, nghịch biến của hàm số được gọi là xét sự biến thiên của hàm số. Ví dụ: Tìm khoảng đồng biến, nghịch biến của hàm số 1. y x3 3x 2 1 2. y x3 3x 2 5 x 5 3. y x 4 8 x 2 10 4. y x4 2x2 3 Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 1 -

Tài liệu được xem nhiều: