Danh mục

Toán cao cấp A3 - Ths Đoàn Vương Nguyên

Số trang: 19      Loại file: pdf      Dung lượng: 533.44 KB      Lượt xem: 23      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 15,000 VND Tải xuống file đầy đủ (19 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

là một trong các giáo trình trong giai đoạn đại cương của bậc đào tạo đại học. Giáo trình được xây dựng theo phương châm vừa đáp ứng yêu cầu chuẩn mực của sách giáo khoa, vừa có giá trị thực tiễn, đồng thời tăng cường khả năng tự học, tự nghiên cứu của sinh viên.
Nội dung trích xuất từ tài liệu:
Toán cao cấp A3 - Ths Đoàn Vương Nguyên ThS. ðoàn Vương Nguyên Slide bài gi ng Toán A3DH TOÁN CAO C P A 3 ð I H C Tài li u tham kh o: 1. Giáo trình Toán cao c p A3 – Nguy n Phú Vinh – ðHCN TP. HCM. 2. Ngân hàng câu h i Toán cao c p – Nguy n Phú Vinh – ðHCN TP.HCM. 3. Gi i tích hàm nhi u bi n (Toán 3) – ð Công Khanh (ch biên) – NXBðHQG TP. HCM. 4. Gi i tích hàm nhi u bi n (Toán 4) – ð Công Khanh (ch biên) – NXBðHQG TP. HCM. 5. Phép tính Vi tích phân (t p 2) – Phan Qu c Khánh – NXB Giáo d c. 6. Phép tính Gi i tích hàm nhi u bi n – Nguy n ðình Trí (ch biên) – NXB Giáo d c. 7. Tích phân hàm nhi u bi n – Phan Văn H p, Lê ðình Th nh – NXB KH và K thu t. 8. Bài t p Gi i tích (t p 2) – Nguy n Th y Thanh – NXB Giáo d c. Chương 1. HÀM S NHI U BI N S §1. KHÁI NI M CƠ B N 1.1. ð nh nghĩa • Cho D ⊂ ℝ 2 . Tương ng f : D → ℝ , ( x, y ) ֏ z = f ( x, y ) duy nh t, ñư c g i là hàm s 2 bi n x và y. • T p D ñư c g i là MXð c a hàm s và f ( D ) = {z ∈ ℝ z = f ( x, y ), ∀( x, y ) ∈ D} là mi n giá tr . Hình b Hình a – N u M(x, y) thì D là t p h p ñi m M trong ℝ 2 sao cho – N u M(x, y) thì D là t p h p ñi m M trong ℝ 2 sao cho f(M) có nghĩa, thư ng là mi n liên thông (n u M, N thu c f(M) có nghĩa, thư ng là t p liên thông. (T p liên thông D mi n D mà t n t i 1 ñư ng n i M v i N n m hoàn toàn là t n t i ñư ng cong n i 2 ñi m b t kỳ trong D n m hoàn trong D thì D là liên thông-Hình a)). toàn trong D). – Tr trư ng h p D = ℝ 2 , D thư ng ñư c gi i h n b i 1 VD 1. ñư ng cong kín ∂D (biên) ho c không. Mi n liên thông D Hàm s z = f(x, y) = x3y + 2xy2 – 1 xác ñ nh trên ℝ 2 . là ñơn liên n u D ñư c gi i h n b i 1 ñư ng cong kín (Hình VD 2. Hàm s z = f ( x, y ) = 4 − x 2 − y 2 có MXð là hình a); ña liên n u ñư c gi i h n b i nhi u ñư ng cong kín r i tròn ñóng tâm O(0; 0), bán kính R = 2. nhau t ng ñôi m t (Hình b). – D là mi n ñóng n u M ∈ ∂D ⇒ M ∈ D , mi n m VD 3. Hàm s z = f ( x, y ) = ln(4 − x 2 − y 2 ) có MXð là n u M ∈ ∂D ⇒ M ∉ D . hình tròn m tâm O(0; 0), bán kính R = 2. Chú ý • Khi cho hàm s f(x, y) mà không nói gì thêm thì ta hi u VD 4. Hàm s z = f ( x, y ) = ln(2 x + y − 3) có MXð là n a MXð D là t p t t c (x, y) sao cho f(x, y) có nghĩa. • Hàm s n bi n f(x1, x2,…, xn) ñư c ñ nh nghĩa tương t . mp m biên d: 2x + y – 3 không ch a O(0; 0). 1.2. Gi i h n c a hàm s hai bi n – Hàm s liên t c Nh n xét • N u khi M n → M 0 trên 2 ñư ng khác nhau mà dãy • Dãy ñi m Mn(xn; yn) d n ñ n ñi m M0(x0; y0) trong ℝ 2 , ký hi u M n → M 0 hay ( xn ; yn ) → ( x0 ; y0 ) , khi n → +∞ {f(xn, yn)} có hai gi i h n khác nhau thì ∃ lim f ( M ) . M →M0 n u lim d ( M n , M 0 ) = lim ( xn − x0 ) + ( yn − y0 ) = 0 . 2 2 n →∞ n →∞ 2 x 2 y − 3x − 1 VD 5. Cho f ( x, y ) = lim ...

Tài liệu được xem nhiều: