Danh mục

Toán lượng giác - Chương 7: Phương trình lượng giác chứa căn và phương trình lượng giác chứa giá trị tuyệt đối

Số trang: 13      Loại file: pdf      Dung lượng: 207.99 KB      Lượt xem: 11      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mời các bạn tham khảo tài liệu chương 7 phương trình lượng giác chứa căn và phương trình lượng giác chứa giá trị tuyệt đối, để nắm các công thức về lượng giác và cách giải bài tập lượng giác chứa căn và chứa giá trị tuyệt đối.
Nội dung trích xuất từ tài liệu:
Toán lượng giác - Chương 7: Phương trình lượng giác chứa căn và phương trình lượng giác chứa giá trị tuyệt đốiCHÖÔNG VIIPHÖÔNG TRÌNH LÖÔÏNG GIAÙC CHÖÙA CAÊN VAØ PHÖÔNGTRÌNH LÖÔÏNG GIAÙC CHÖÙA GIAÙ TRÒ TUYEÄT ÑOÁI A) PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C CHÖÙ A CAÊ N Caù c h giaû i : AÙ p duï n g caù c coâ n g thöù c ⎧A ≥ 0 ⎧B ≥ 0 A = B⇔⎨ ⇔⎨ ⎩A = B ⎩A = B ⎧B ≥ 0 A =B⇔⎨ ⎩A = B 2 Ghi chuù : Do theo phöông trình chænh lyù ñaõ boû phaà n baá t phöông trình löôï n g giaùc neâ n ta xöû lyù ñieàu kieä n B ≥ 0 baè n g phöông phaù p thöû laï i vaø chuù n g toâ i boû caùc baø i toaùn quaù phöùc taï p .Baø i 138 : Giaû i phöông trình 5 cos x − cos 2x + 2 sin x = 0 ( *) ( *) ⇔ 5 cos x − cos 2x = −2 sin x ⎧sin x ≤ 0 ⇔⎨ ⎩5 cos x − cos 2x = 4 sin x 2 ⎧sin x ≤ 0 ⎪ ⇔⎨ ( 2 ) ( 2 ⎪5 cos x − 2 cos x − 1 = 4 1 − cos x ⎩ ) ⎧sin x ≤ 0 ⇔⎨ ⎩2 cos x + 5 cos x − 3 = 0 2 ⎧sin x ≤ 0 ⎪ ⇔⎨ 1 ⎪cos x = 2 ∨ cos x = −3 ( loaï i ) ⎩ ⎧sin x ≤ 0 ⎪ ⇔⎨ π ⎪ x = ± 3 + k2π, k ∈ ⎩ π ⇔ x = − + k2π, k ∈ 3Baø i 139 : Giaû i phöông trình sin3 x + cos3 x + sin3 x cot gx + cos3 xtgx = 2 sin 2x Ñieà u kieän : ⎧cos x ≠ 0 ⎪ ⎧sin 2x ≠ 0 ⎨sin x ≠ 0 ⇔ ⎨ ⇔ sin 2x > 0 ⎪sin 2x ≥ 0 ⎩sin 2x ≥ 0 ⎩ Luù c ñoù : ( *) ⇔ sin3 x + cos3 x + sin2 x cos x + cos2 x sin x = 2 sin 2x ⇔ sin2 x ( sin x + cos x ) + cos2 x ( cos x + sin x ) = 2sin 2x ( ) ⇔ ( sin x + cos x ) sin 2 x + cos2 x = 2 sin 2x ⎧sin x + cos x ≥ 0 ⎪ ⇔⎨ 2 ⎪( sin x + cos x ) = 2 sin 2x ⎩ ⎧ ⎛ π⎞ ⎧ ⎛ π⎞ ⎪ 2 sin ⎜ x + ⎟ ≥ 0 ⎪sin ⎜ x + ⎟ ≥ 0 ⇔⎨ ⎝ 4⎠ ⇔⎨ ⎝ 4⎠ ⎪1 + sin 2x = 2 sin 2x ⎪sin 2x = 1 ( nhaä n do sin 2x > 0 ) ⎩ ⎩ ⎧ ⎛ π⎞ ⎧ ⎛ π⎞ ⎪sin ⎜ x + 4 ⎟ ≥ 0 ⎪ ⎪sin ⎜ x + 4 ⎟ ≥ 0 ⎪ ⇔⎨ ⎝ ⎠ ⇔⎨ ⎝ ⎠ ⎪ x = π + kπ, k ∈ ⎪ x = π + m2π ∨ x = 5π + m2π ( loaï i ) , m ∈ ⎪ ⎩ 4 ⎪ ⎩ 4 4 π ⇔ x = + m2π, m ∈ 4 ⎛ π⎞Baø i 140 : Giaû i phöông trình 1 + 8 sin 2x. cos2 2x = 2 sin ⎜ 3x + ⎟ ( *) ⎝ 4⎠ ⎧ ⎛ π⎞ ⎪sin ⎜ 3x + 4 ⎟ ≥ 0 ⎪ ⎝ ⎠ Ta coù : (*) ⇔ ⎨ ⎪1 + 8 sin 2x cos2 2x = 4 sin2 ⎛ 3x + π ⎞ ⎪ ⎜ ⎟ ⎩ ⎝ 4⎠ ⎧ ⎛ π⎞ ⎪sin ⎜ 3x + 4 ⎟ ≥ 0 ⎪ ⎝ ⎠ ⇔⎨ ⎪1 + 4 sin 2x (1 + cos 4x ) = 2 ⎡1 − cos( 6x + π ) ⎤ ⎪ ⎢ ⎣ 2 ⎥⎦ ⎩ ⎧ ⎛ π⎞ ⎪sin ⎜ 3x + ⎟ ≥ 0 ⇔⎨ ⎝ 4⎠ ⎪1 + 4 sin 2x + 2 ( sin 6x − sin 2x ) = 2 (1 + sin 6x ) ⎩ ⎧ ⎛ π⎞ ⎧ ⎛ π⎞ ⎪sin ⎜ 3x + 4 ⎟ ≥ 0 ⎪ ⎪sin ⎜ 3x + 4 ⎟ ≥ 0 ⎪ ⇔⎨ ⎝ ⎠ ⇔⎨ ⎝ ⎠ ⎪sin 2x = 1 ⎪ x = π + kπ ∨ x = 5π + kπ, k ∈ ⎪ ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: