Tóm tắt Luận án Tiến sĩ Khoa học máy tính: Nghiên cứu và phát triển các thuật toán giải quyết các bài toán tối ưu trong giao thông vận tải người và hàng hóa
Số trang: 27
Loại file: pdf
Dung lượng: 3.37 MB
Lượt xem: 11
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tóm tắt Luận án Tiến sĩ Khoa học máy tính "Nghiên cứu và phát triển các thuật toán giải quyết các bài toán tối ưu trong giao thông vận tải người và hàng hóa" đề xuất một thuật toán thích nghi và dựa trên dữ liệu để học quy trình Poison không thuần nhất nhằm dự đoán các yêu cầu vận chuyển trong tương lai giúp giảm thiểu khoảng cách không tải của phương tiện.
Nội dung trích xuất từ tài liệu:
Tóm tắt Luận án Tiến sĩ Khoa học máy tính: Nghiên cứu và phát triển các thuật toán giải quyết các bài toán tối ưu trong giao thông vận tải người và hàng hóa BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN SƠN NGHIÊN CỨU VÀ PHÁT TRIỂN CÁC THUẬT TOÁN GIẢI QUYẾT CÁC BÀI TOÁN TỐI ƯU TRONG GIAO THÔNG VẬN TẢI NGƯỜI VÀ HÀNG HÓA Ngành: Khoa học máy tính Mã số: 9480101 TÓM TẮT LUẬN ÁN TIẾN SĨ KHOA HỌC MÁY TÍNH Hà Nội - 2023 Công trình được hoàn thành tại: Trường Đại học Bách khoa Hà Nội Người hướng dẫn khoa học: 1. TS. Phạm Quang Dũng 2. PGS. TS. Nguyễn Xuân Hoài Phản biện 1: Phản biện 2: Phản biện 3: Luận án được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Trường họp tại Trường Đại học Bách khoa Hà Nội Vào hồi …….. giờ, ngày ….. tháng ….. năm ……… Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tạ Quang Bửu - Trường ĐHBK Hà Nội 2. Thư viện Quốc gia Việt Nam GIỚI THIỆU Ngành giao thông vận tải đóng vai trò quan trọng trong phát triển kinh tế và kết nối giữa các vùng. Điều này càng đúng hơn trong nền kinh tế toàn cầu, bao gồm sự tăng cường hợp tác kinh tế liên quan đến sự di chuyển của người và hàng hóa. Bài toán tìm lộ trình tối ưu cho các xe phục vụ các yêu cầu vận chuyển được gọi là Bài toán Định tuyến Xe (VRP). Đây là một bài toán thuộc lớp NP-khó. Hàng ngàn bài báo trên thế giới đã được dành cho vấn đề này. Nhiều nhà nghiên cứu đã đề xuất nhiều mô hình và thuật toán cho VRP và các biến thể của nó. Việc nghiên cứu và mở rộng bài toán với sự kết hợp của các yếu tố thực tế làm tăng khả năng ứng dụng của bài toán VRP vẫn là một vấn đề mang tính thời sự. Vì vậy, luận án này nhằm nghiên cứu và đề xuất những biến thể mới của VRPs, xem xét một số yếu tố trong thế giới thực để mở rộng VRPs một cách linh hoạt và thực tế hơn. Do tầm quan trọng thực tế của VRP, mục tiêu chính của luận án này là mở rộng các bài toán VRP hiện có một cách linh hoạt và thực tế hơn. Điều quan trọng là các biến thể mới được xây dựng và các thuật toán phù hợp được phát triển để giải quyết chúng một cách hiệu quả nhất có thể. Theo khảo sát từ các công trình khoa học cũng như hoạt động vận hành thực tế của các công ty vận tải, hoạt động định tuyến thường được phân thành hai kịch bản: tĩnh và động. Do đó, luận án tập trung vào hai trường hợp điển hình này của các bài toán VRP. Đối với bài toán VRP tĩnh, các tác giả trong Vidal et al. 2020 tuyên bố rằng một trong những mục tiêu quan trọng nhất của bài toán định tuyến là cân bằng phân bổ khối lượng công việc để đảm bảo các kế hoạch được chấp nhận, duy trì sự hài lòng và tinh thần của nhân viên, giảm thời gian làm thêm giờ và để giảm tắc nghẽn trong sử dụng tài nguyên. Do sức chứa hạn chế, quy mô đội xe cố định và hạn chế về thời gian, các xe phải vận chuyển các sản phẩm từ nhiều trung tâm phân phối đến khách hàng và thực hiện nhiều chuyến đi. Tuy nhiên, một số chuyến đi của các phương tiện được lập kế hoạch chở quá ít hàng hóa trong các thực tế do ràng buộc thời gian chặt. Vì vậy, luận án này đề xuất một biến thể mới của bài toán VRP tĩnh trong đó xét đến hầu hết các ràng buộc đã được nghiên cứu kỹ lưỡng và bao gồm một ràng buộc mới về giới hạn dưới của tải trọng chưa từng được nghiên cứu trong các công trình. Luận án này mô hình hóa bài toán xem xét dưới dạng quy hoạch nguyên tuyến tính hỗn hợp (MILP), phân tích các thách thức của các ràng buộc mới về giới hạn dưới tải trọng và đề xuất một khung tìm kiếm lân cận lớn thích ứng (ALNS) để giải quyết nó. Đối với bài toán VRP động, một mô hình vận chuyển người mới 1 được nghiên cứu, đây là phần mở rộng của bài toán chia sẻ chuyến đi do Li et al. 2014 đề xuất. Trong mô hình đó, người và hàng hóa có thể chia sẻ chuyến đi trên cùng mạng lưới taxi và thông tin về các yêu cầu trong tương lai được dự đoán. Một mô hình toán học mới và một thuật toán học dựa trên dữ liệu được đề xuất. Đồng thời, một thuật toán điều phối lịch trình taxi khai thác các thông tin dự đoán cũng được phát triển trong luận án này. Động lực nghiên cứu Việc tối ưu hóa giao thông vận tải đã trở thành một vấn đề lớn trong những năm gần đây. Bài toán định tuyến là một thách thức mới đối với ngành giao thông vận tải: nâng cao năng suất và giảm chi phí bằng cách tăng số lượng khách hàng được phục vụ, giảm thời gian và chi phí vận chuyển để đạt được kế hoạch nguồn nhân lực tốt và hoạt động hiệu quả. Nghiên cứu về VRP không chỉ mang lại lợi ích cho các công ty vận tải mà còn cho cả xã hội. Điều này thúc đẩy chúng tôi lấp đầy khoảng trống trong tài liệu về một số bài toán VRP bằng cách kết hợp các yếu tố trong thế giới thực để mở rộng các bài toán này một cách linh hoạt và thực tế hơn. Phương pháp Phương pháp luận của luận văn này như sau: • Nghiên cứu lý thuyết các biến thể của bài toán VRP. • Phân tích các công trình khoa học liên quan đến các bài toán được xem xét. • Thiết kế các mô hình thực tế và hữu ích cho bài toán VRP đang xem xét. • Đề xuất các thuật toán metaheuristic hiệu quả để giải quyết các mô hình VRP nghiên cứu. Phạm vi nghiên cứu Các bài toán VRP là các bài toán rất phức tạp bao gồm nhiều bài toán con và biến thể. Do đó, phạm vi của luận án này là nghiên cứu hai bài toán định tuyến giao thông thực tế điển hình cho hai loại VRP, tĩnh và động. Trong lớp bài toán VRP tĩnh, bài toán phân phối hàng hóa được nghiên cứu. Bài toán xem xét sự kết hợp các ràng buộc thực tế để giải quyết các vấn đề thực tế tại một trong những công ty sữa lớn nhất Việt Nam. Trong lớp bài toán VRP động, bài toán lập lịch trình taxi động với thông tin dự báo được nghiên cứu. Bài toán này được mở rộng từ bài toán VRP chia sẻ chuyến đi mới do Li et al. 2014 đề xuất, trong đó người và hàng hóa được phục vụ trên cùng ...
Nội dung trích xuất từ tài liệu:
Tóm tắt Luận án Tiến sĩ Khoa học máy tính: Nghiên cứu và phát triển các thuật toán giải quyết các bài toán tối ưu trong giao thông vận tải người và hàng hóa BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN SƠN NGHIÊN CỨU VÀ PHÁT TRIỂN CÁC THUẬT TOÁN GIẢI QUYẾT CÁC BÀI TOÁN TỐI ƯU TRONG GIAO THÔNG VẬN TẢI NGƯỜI VÀ HÀNG HÓA Ngành: Khoa học máy tính Mã số: 9480101 TÓM TẮT LUẬN ÁN TIẾN SĨ KHOA HỌC MÁY TÍNH Hà Nội - 2023 Công trình được hoàn thành tại: Trường Đại học Bách khoa Hà Nội Người hướng dẫn khoa học: 1. TS. Phạm Quang Dũng 2. PGS. TS. Nguyễn Xuân Hoài Phản biện 1: Phản biện 2: Phản biện 3: Luận án được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Trường họp tại Trường Đại học Bách khoa Hà Nội Vào hồi …….. giờ, ngày ….. tháng ….. năm ……… Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tạ Quang Bửu - Trường ĐHBK Hà Nội 2. Thư viện Quốc gia Việt Nam GIỚI THIỆU Ngành giao thông vận tải đóng vai trò quan trọng trong phát triển kinh tế và kết nối giữa các vùng. Điều này càng đúng hơn trong nền kinh tế toàn cầu, bao gồm sự tăng cường hợp tác kinh tế liên quan đến sự di chuyển của người và hàng hóa. Bài toán tìm lộ trình tối ưu cho các xe phục vụ các yêu cầu vận chuyển được gọi là Bài toán Định tuyến Xe (VRP). Đây là một bài toán thuộc lớp NP-khó. Hàng ngàn bài báo trên thế giới đã được dành cho vấn đề này. Nhiều nhà nghiên cứu đã đề xuất nhiều mô hình và thuật toán cho VRP và các biến thể của nó. Việc nghiên cứu và mở rộng bài toán với sự kết hợp của các yếu tố thực tế làm tăng khả năng ứng dụng của bài toán VRP vẫn là một vấn đề mang tính thời sự. Vì vậy, luận án này nhằm nghiên cứu và đề xuất những biến thể mới của VRPs, xem xét một số yếu tố trong thế giới thực để mở rộng VRPs một cách linh hoạt và thực tế hơn. Do tầm quan trọng thực tế của VRP, mục tiêu chính của luận án này là mở rộng các bài toán VRP hiện có một cách linh hoạt và thực tế hơn. Điều quan trọng là các biến thể mới được xây dựng và các thuật toán phù hợp được phát triển để giải quyết chúng một cách hiệu quả nhất có thể. Theo khảo sát từ các công trình khoa học cũng như hoạt động vận hành thực tế của các công ty vận tải, hoạt động định tuyến thường được phân thành hai kịch bản: tĩnh và động. Do đó, luận án tập trung vào hai trường hợp điển hình này của các bài toán VRP. Đối với bài toán VRP tĩnh, các tác giả trong Vidal et al. 2020 tuyên bố rằng một trong những mục tiêu quan trọng nhất của bài toán định tuyến là cân bằng phân bổ khối lượng công việc để đảm bảo các kế hoạch được chấp nhận, duy trì sự hài lòng và tinh thần của nhân viên, giảm thời gian làm thêm giờ và để giảm tắc nghẽn trong sử dụng tài nguyên. Do sức chứa hạn chế, quy mô đội xe cố định và hạn chế về thời gian, các xe phải vận chuyển các sản phẩm từ nhiều trung tâm phân phối đến khách hàng và thực hiện nhiều chuyến đi. Tuy nhiên, một số chuyến đi của các phương tiện được lập kế hoạch chở quá ít hàng hóa trong các thực tế do ràng buộc thời gian chặt. Vì vậy, luận án này đề xuất một biến thể mới của bài toán VRP tĩnh trong đó xét đến hầu hết các ràng buộc đã được nghiên cứu kỹ lưỡng và bao gồm một ràng buộc mới về giới hạn dưới của tải trọng chưa từng được nghiên cứu trong các công trình. Luận án này mô hình hóa bài toán xem xét dưới dạng quy hoạch nguyên tuyến tính hỗn hợp (MILP), phân tích các thách thức của các ràng buộc mới về giới hạn dưới tải trọng và đề xuất một khung tìm kiếm lân cận lớn thích ứng (ALNS) để giải quyết nó. Đối với bài toán VRP động, một mô hình vận chuyển người mới 1 được nghiên cứu, đây là phần mở rộng của bài toán chia sẻ chuyến đi do Li et al. 2014 đề xuất. Trong mô hình đó, người và hàng hóa có thể chia sẻ chuyến đi trên cùng mạng lưới taxi và thông tin về các yêu cầu trong tương lai được dự đoán. Một mô hình toán học mới và một thuật toán học dựa trên dữ liệu được đề xuất. Đồng thời, một thuật toán điều phối lịch trình taxi khai thác các thông tin dự đoán cũng được phát triển trong luận án này. Động lực nghiên cứu Việc tối ưu hóa giao thông vận tải đã trở thành một vấn đề lớn trong những năm gần đây. Bài toán định tuyến là một thách thức mới đối với ngành giao thông vận tải: nâng cao năng suất và giảm chi phí bằng cách tăng số lượng khách hàng được phục vụ, giảm thời gian và chi phí vận chuyển để đạt được kế hoạch nguồn nhân lực tốt và hoạt động hiệu quả. Nghiên cứu về VRP không chỉ mang lại lợi ích cho các công ty vận tải mà còn cho cả xã hội. Điều này thúc đẩy chúng tôi lấp đầy khoảng trống trong tài liệu về một số bài toán VRP bằng cách kết hợp các yếu tố trong thế giới thực để mở rộng các bài toán này một cách linh hoạt và thực tế hơn. Phương pháp Phương pháp luận của luận văn này như sau: • Nghiên cứu lý thuyết các biến thể của bài toán VRP. • Phân tích các công trình khoa học liên quan đến các bài toán được xem xét. • Thiết kế các mô hình thực tế và hữu ích cho bài toán VRP đang xem xét. • Đề xuất các thuật toán metaheuristic hiệu quả để giải quyết các mô hình VRP nghiên cứu. Phạm vi nghiên cứu Các bài toán VRP là các bài toán rất phức tạp bao gồm nhiều bài toán con và biến thể. Do đó, phạm vi của luận án này là nghiên cứu hai bài toán định tuyến giao thông thực tế điển hình cho hai loại VRP, tĩnh và động. Trong lớp bài toán VRP tĩnh, bài toán phân phối hàng hóa được nghiên cứu. Bài toán xem xét sự kết hợp các ràng buộc thực tế để giải quyết các vấn đề thực tế tại một trong những công ty sữa lớn nhất Việt Nam. Trong lớp bài toán VRP động, bài toán lập lịch trình taxi động với thông tin dự báo được nghiên cứu. Bài toán này được mở rộng từ bài toán VRP chia sẻ chuyến đi mới do Li et al. 2014 đề xuất, trong đó người và hàng hóa được phục vụ trên cùng ...
Tìm kiếm theo từ khóa liên quan:
Luận án Tiến sĩ Khoa học máy tính Khoa học máy tính Các bài toán VRP Mô hình vận chuyển hàng hóa Bài toán phân phối sản phẩm Bài toán định tuyến taxi Bài toán giao thông vận tải hàng hóaGợi ý tài liệu liên quan:
-
Tóm tắt Đồ án tốt nghiệp Khoa học máy tính: Xây dựng ứng dụng quản lý quán cà phê
15 trang 475 1 0 -
Đề thi kết thúc học phần học kì 2 môn Cơ sở dữ liệu năm 2019-2020 có đáp án - Trường ĐH Đồng Tháp
5 trang 378 6 0 -
32 trang 230 0 0
-
Đồ án nghiên cứu khoa học: Ứng dụng công nghệ cảm biến IoT vào mô hình thủy canh
30 trang 201 0 0 -
6 trang 173 0 0
-
Giải thuật và cấu trúc dữ liệu
305 trang 161 0 0 -
76 trang 157 2 0
-
3 trang 143 2 0
-
Sửa chữa và lắp ráp máy tính tại nhà
276 trang 103 0 0 -
Tóm tắt luận án Tiến sĩ Kỹ thuật: Sử dụng ngôn ngữ trục trong dịch đa ngữ
27 trang 95 0 0