Danh mục

Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu và phát triển một số kỹ thuật che giấu thông tin nhạy cảm trong khai phá hữu ích cao

Số trang: 26      Loại file: pdf      Dung lượng: 795.91 KB      Lượt xem: 13      Lượt tải: 0    
tailieu_vip

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tóm tắt Luận án Tiến sĩ Kỹ thuật "Nghiên cứu và phát triển một số kỹ thuật che giấu thông tin nhạy cảm trong khai phá hữu ích cao" được nghiên cứu với mục tiêu là: Nghiên cứu và đề xuất các thuật toán ẩn tập mục hữu ích cao nhạy cảm và luật kết hợp hữu ích cao nhạy cảm dựa trên kỹ thuật heuristic; Nghiên cứu và áp dụng lý thuyết Giàn để giảm hiệu ứng phụ trong quá trình che giấu thông tin nhạy cảm trong khai phá hữu ích cao.
Nội dung trích xuất từ tài liệu:
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu và phát triển một số kỹ thuật che giấu thông tin nhạy cảm trong khai phá hữu ích cao ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA HUỲNH TRIỆU VỸ NGHIÊN CỨU VÀ PHÁT TRIỂN MỘT SỐ KỸ THUẬT CHE GIẤU THÔNG TIN NHẠY CẢM TRONG KHAI PHÁ HỮU ÍCH CAO Chuyên ngành : KHOA HỌC MÁY TÍNH Mã số : 9480101 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT Đà Nẵng, 02/2023 Công trình được hoàn thành tại TRƯỜNG ĐẠI HỌC BÁCH KHOA Người hướng dẫn khoa học: 1. TS. Trương Ngọc Châu 2. TS. Lê Quốc Hải Phản biện 1: ………………………………………………. Phản biện 2: ………………………………………………. Phản biện 3: ………………………………………………. Luận án sẽ được bảo vệ trước Hội đồng chấm luận án cấp Trường, Trường Đại học Bách khoa Vào hồi … giờ … ngày … tháng … năm 20.... Có thể tìm hiểu luận án tại: - Thư viện quốc gia Việt Nam. - Trung tâm Học liệu và Truyền thông, Trường Đại học Bách khoa, Đại học Đà Nẵng. 1 MỞ ĐẦU 1. Đặt vấn đề Ngày nay, với sự phát triển nhanh chóng của ứng dụng công nghệ thông tin trong hầu hết các lĩnh vực, lượng dữ liệu từ các hệ thống thông tin, ứng dụng ngày càng gia tăng và được lưu trữ thành các kho dữ liệu lớn. Các phương pháp khai thác dữ liệu truyền thống không còn đáp ứng đầy đủ những yêu cầu về phân tích, đánh giá, dự đoán, dự báo dựa trên dữ liệu. Do đó, kỹ thuật phát hiện tri thức trong cơ sở dữ liệu (CSDL) đã ra đời nhằm giải quyết bài toán khai phá dữ liệu đang được áp dụng một cách rộng rãi trong nhiều lĩnh vực khác nhau của đời sống. Mục đích của khai phá dữ liệu (KPDL) là khám phá tri thức nhằm tìm ra những mẫu mới, những thông tin tiềm ẩn mang tính dự đoán chưa được biết đến, có khả năng mang lại lợi ích cho người sử dụng, trong đó quan trọng nhất là tìm ra các mẫu chứa đựng những thông tin có thể hỗ trợ ra quyết định tồn tại trong CSDL. Có nhiều kỹ thuật đã được nghiên cứu và đề xuất trong KPDL. Một trong những kỹ thuật quan trọng được ứng dụng rộng rãi là khai phá tập mục thường xuyên và luật kết hợp. Trong khai phá tập mục thường xuyên vai trò của các mục xuất hiện trong các giao tác là như nhau. Mỗi mục không thể xuất hiện nhiều hơn một lần trong mỗi giao tác. Tập mục xuất hiện phổ biến hơn trong CSDL sẽ có ý nghĩa hơn đối với người dùng. Như vậy, các tập mục thường xuyên khai thác được chỉ mang ngữ nghĩa thống kê nên nó chỉ đáp ứng một phần nhu cầu ứng dụng thực tiễn. Chẳng hạn như nhà kinh doanh quan tâm đến tần suất xuất hiện đồng thời của các mặt hàng trong cùng một giao dịch của khách hàng thì có thể sử dụng kỹ thuật khai thác tập mục thường xuyên để dự đoán xu thế mua sắm của khách hàng. Tuy nhiên, nhà quản lý có thể cần đến những thông tin chi tiết hơn như lợi ích mang lại của một hoặc một nhóm mặt hàng được khách hàng mua sắm cùng nhau trong một giao dịch. Khai phá tập mục thường xuyên không đáp ứng được điều này. Chính vì điều này mà một khái niệm mới ra đời, đó là Khai phá hữu ích cao, tức là có xét đến yếu tố hữu ích của mỗi mục trong CSDL (ví dụ: số lượng, lợi nhuận của mỗi mặt hàng trong mỗi giao tác của CSDL). Ngày nay, sự phát triển nhanh chóng của Công nghệ thông tin đang tạo môi trường thuận lợi để thúc đẩy hợp tác thương mại toàn cầu và kinh doanh xuyên quốc gia. Trong môi trường kinh doanh quốc tế, việc chia sẻ dữ liệu giữa các đối tác hoặc công bố ra bên ngoài internet là rất cần thiết để thúc đẩy sự phát triển. Tuy nhiên, bên trong dữ liệu có thể ẩn chứa các thông tin riêng tư hoặc nhạy cảm (gọi chung là thông tin nhạy cảm) mà chủ 2 sở hữu không muốn tiết lộ ra bên ngoài, vì việc lộ những thông tin nhạy cảm ra bên ngoài có thể khiến cho bên sở hữu dữ liệu đánh mất bí mật kinh doanh hoặc lợi thế cạnh tranh,... Do đó, hiện nay có nhiều mô hình và kỹ thuật đang được nghiên cứu để giải quyết vấn đề đặt ra, làm thế nào để cho phép thực hiện quá trình KPDL trên các tập dữ liệu trong khi vẫn bảo vệ được các thông tin nhạy cảm. Như vậy, để đảm bảo các thông tin nhạy cảm không bị khai thác khi CSDL được chia sẻ ra bên ngoài, thuật toán che giấu thông tin nhạy cảm trong KPDL được áp dụng để sửa dữ liệu nhằm loại bỏ các mẫu dữ liệu có thể suy luận ra các thông nhạy cảm từ kết quả KPDL. Quá trình thực hiện che giấu thông tin nhạy cảm luôn gây ra các hiệu ứng phụ. Hiệu ứng phụ được xác định là sự sai khác của bản thân dữ liệu và kết quả KPDL của CSDL gốc so với CSDL sửa đổi. Như vậy, vấn đề chính cần giải quyết trong bài toán che giấu thông tin nhạy cảm trong KPDL là đề xuất các thuật toán che giấu được tất cả thông tin nhạy cảm nhưng giảm thiểu các hiệu ứng phụ. Có nhiều phương pháp tiếp cận để giải quyết bài toán này: Theo tiếp cận heuristic để thay đổi dữ liệu hoặc khóa dữ liệu; theo tiếp cận border-based; theo tiếp cận exact,... Để giải q ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: