Thông tin tài liệu:
Tài liệu tham khảo cho các bạn sinh viên có tư liệu ôn thi tốt xác suất đạt kết quả cao
Nội dung trích xuất từ tài liệu:
Tổng hợp các bài xác suất thống kê BÀI TẬP XÁC SUẤT THỐNG KÊBài 1: Có 30 đề thi trong đó có 10 đề khó, 20 đề trung bình. Tìm xác suất để: a) Một Học sinh bắt một đề gặp được đề trung bình. b) Một Học sinh bắt hai đề, được ít nhất một đề trung bình. Giải a) Gọi A là biến cố Học sinh bắt được đề trung bình: C1 20 2 P(A) = 1 = = 20 C30 30 3 b) Gọi B là biến cố học sinh bắt được 1 đề trung bình và một đề khó Gọi C là biến cố học sinh bắt được 2 đề trung bình. Gọi D là biến cố học sinh bắt hai đề, được ít nhất một đề trung bình. C1 .C1 + C2 200 + 190 P(D) = 20 102 = = 0,896 20 Khi đó: C30 435Bài 2: Có hai lớp 10A và 10 B mỗi lớp có 45 học sinh, số h ọc sinh giỏi văn và số h ọcsinh giỏi toán được cho trong bảng sau. Có một đoàn thanh tra. Hi ệu trưởng nên m ờivào lớp nào để khả năng gặp được một em giỏi ít nhất một môn là cao nhất? 10A 10B Lớp Giỏi Văn 25 25 Toán 30 30 Văn và Toán 20 10 GiảiGọi V là biến cố học sinh giỏi Văn, T là biến cố học sinh giỏi Toán.Ta có: Lớp 10A 25 30 20 7 P(V + T) = P(V) + P(T) − P(VT) = + − = 45 45 45 9Lớp 10B: 25 30 10 P(V + T) = P(V) + P(T) − P(VT) = + − =1 45 45 45Vậy nên chọn lớp 10B.Bài 3: Lớp có 100 Sinh viên, trong đó có 50 SV giỏi Anh Văn, 45 SV giỏi Pháp Văn, 10SV giỏi cả hai ngoại ngữ. Chọn ngẫu nhiên một sinh viên trong lớp. Tính xác suất: a) Sinh viên này giỏi ít nhất một ngoại ngữ. b) Sinh viên này không giỏi ngoại ngữ nào hết. 1 c) Sinh viên này chỉ giỏi đúng một ngoại ngữ. d) Sinh viên này chỉ giỏi duy nhất môn Anh Văn. Giảia) Gọi A là biến cố Sinh viên giỏi Anh Văn. Gọi B là biến cố Sinh viên giỏi Pháp Văn. Gọi C là biến cố Sinh viên giỏi ít nhất một ngoại ngữ. 50 45 10 P(C) = P(A + B) = P(A) + P(B) − P(AB) = + − = 0,85 100 100 100b) Gọi D là biến cố Sinh viên này không giỏi ngoại ngữ nào hết. P(D) = 1 − P(C) = 1 − 0,85 = 0,15 50 45 10c) P(AB + AB) = P(A) + P(B) − 2P(AB) = + − 2. = 0,75 100 100 100 50 10d) P(AB) = P(A) − P(AB) = − = 0,4 100 100Bài 4: Trong một hộp có 12 bóng đèn, trong đó có 3 bóng hỏng. Lấy ngẫu nhiên khônghoàn lại ba bóng để dùng. Tính xác suất để: a) Cả ba bóng đều hỏng. b) Cả ba bóng đều không hỏng? c) Có ít nhất một bóng không hỏng? d) Chỉ có bóng thứ hai hỏng? GiảiGọi F là biến cố mà xác suất cần tìm và Ai là biến cố bóng thứ i hỏng 321 1a) P(F) = P ( A1A 2A 3 ) = P ( A1 ) P ( A 2 /A1 ) P ( A 3 / A1A 2 ) = . . = 12 11 10 220b) P(F) = P ( A1 .A 2 .A 3 ) = P ( A1 ) P ( A 2 /A1 ) P ( A 3 / A1 A 2 ) = 9 8 7 21 ..= 12 11 10 55 1 219c) P(F) = 1 − P ( A1A 2A 3 ) = 1 − = 220 220d) P(F) = P ( A1 .A 2 .A 3 ) = P ( A1 ) P ( A 2 /A1 ) P ( A 3 / A1A 2 ) = 938 9 ..= 12 11 10 55B ...