Danh mục

Tổng quan những nghiên cứu và phát triển của Điện tử công suất & truyền động điện

Số trang: 22      Loại file: pdf      Dung lượng: 335.84 KB      Lượt xem: 15      Lượt tải: 0    
tailieu_vip

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Sự hoàn thiện của công nghệ vật liệu bán dẫn công suất và kỹ thuật điều khiển đã tạo điều kiện cho ngành Tự động hóa phát triển vượt bậc trong hơn ba thập kỷ qua. Bài báo sẽ điểm lại sự phát triển của Truyền động điện và Điện tử công suất, là các thành phần cơ bản trong một hệ thống tự động hóa. Việc khái quát này sẽ là cơ sở cho những nhận định về sự phát triển của lĩnh vực trong một tương lai gần, kỷ nguyên mà vấn đề năng lượng và môi...
Nội dung trích xuất từ tài liệu:
Tổng quan những nghiên cứu và phát triển của Điện tử công suất & truyền động điện Tổng quan những nghiên cứu và xu hướng phát triển của Điện tử công suất & truyền động điện Tóm tắt Sự hoàn thiện của công nghệ vật liệu bán dẫn công suất và kỹ thuật điều khiển đã tạo điều kiện cho ngành Tự động hóa phát triển vượt bậc trong hơn ba thập kỷ qua. Bài báo sẽ điểm lại sự phát triển của Truyền động điện và Điện tử công suất, là các thành phần cơ bản trong một hệ thống tự động hóa. Việc khái quát này sẽ là cơ sở cho những nhận định về sự phát triển của lĩnh vực trong một tương lai gần, kỷ nguyên mà vấn đề năng lượng và môi trường trở nên quan trọng hơn bao giờ hết. I. Mở đầu Kỷ nguyên của Truyền động điện có thể coi như bắt đầu từ thế kỷ 19 khi Tesla phát minh ra động cơ không đồng bộ năm 1888. Từ đó, động cơ điện dần dần thay thế động cơ hơi nước, vốn được coi là động lực cho cách mạng công nghiệp lần thứ nhất (thế kỷ 18) và lần thứ hai (thế kỷ 19). Sự ra đời của các van bán dẫn công suất lớn như diode, BJT, thyristor, triac và tiếp đó là IGBT thực sự mang đến cho truyền động điện một sự biến đổi lớn về chất và lượng. Các van bán dẫn chịu điện áp ngày càng cao và khả năng dẫn dòng ngày càng lớn đã tạo nên các cấu hình bộ biến đổi ngày càng đa dạng: chỉnh lưu (AC/DC converter), nghịch lưu (DC/AC converter, inverter), bộ biến đổi một chiều (DC/DC converter) và bộ biến đổi xoay chiều (AC/AC converter) cho phép điều khiển dòng năng lượng cấp cho động cơ một cách hợp lý, phù hợp với yêu cầu công nghệ. Với công trình khoa học được trình bày trong các công bố của mình, Hasse (1969) và Blaschke (1972) [1] đã tạo nên một bước đột phá trong kỹ thuật điều khiển động cơ không đồng bộ. Bằng cách ứng dụng phương pháp chuyển vị tọa độ (transvector), động cơ không đồng bộ được điều khiển trong hệ tọa độ d-q, quay với tốc độ của từ trường quay, thay vì trong hệ tọa độ tĩnh truyền thống a-b-c. Hai phương pháp của Hasse và Blaschke đã nhận được sự quan tâm lớn của giới khoa học và công nghiệp, và sau đó được biết đến với tên gọi lần lượt là: phương pháp điều khiển vector gián tiếp (Hasse) và phương pháp điều khiển vector trực tiếp (Blaschke). Các tiến bộ vượt bậc trong công nghệ vi xử lý, vi điều khiển, và đặc biệt là DSP cho phép thực hiện các thuật toán phức tạp trong thời gian thực đã giúp cho các phương pháp điều khiển vector (hay còn được gọi là điều khiển tựa từ thông – Field Oriented Control FOC) trở thành các công nghệ điều khiển động cơ xoay chiều được chuẩn hóa trong công nghiệp từ những năm 90 của thế kỷ trước. Động cơ điện không đồng bộ, với phương pháp điều khiển vector, đã trở nên dễ điều khiển, đạt được các tính năng cao, do vậy đã dần dần thay thế động cơ một chiều trong những ứng dụng đòi hỏi phải điều khiển trơn tốc độ trong một phạm vi rộng. Phương pháp điều khiển trực tiếp mômen (DTC) do Takahashi đề xuất năm 1986 [2] và Depenbrock năm 1987 [3] cũng là một kỹ thuật đáng lưu ý. Trong phương pháp này, mômen của động cơ không được điều khiển một cách “gián tiếp” thông qua dòng điện mà được điều khiển “trực tiếp” thông qua việc đóng mở các van công suất theo quy luật dựa vào trạng thái tức thì của mômen và từ thông. Phương pháp này đã cho phép đáp ứng mômen của hệ truyền động nhanh hơn gấp hàng chục lần so với phương pháp điều khiển vector. Tuy nhiên, nhấp nhô mômen (torque ripple) là một tồn tại làm hạn chế ứng dụng của phương pháp trong nhiều trường hợp. Các nhà khoa học đã công bố hàng ngàn công trình nghiên cứu trên các tập san hội nghị và tạp chí quốc tế trong thập kỷ cuối cùng của thế kỷ 20. Tuy nhiên, nhược điểm cố hữu của phương pháp chỉ được cải thiện chứ không được giải quyết triệt để. Do vậy, cho đến nay người ta đã coi DTC là một phương pháp bổ trợ cho phương pháp điều khiển vector cho các ứng dụng đòi hỏi điều khiển mômen nhanh nhưng không quá khắt khe về nhấp nhô mômen, ví dụ như truyền động trong ô tô điện. Phương pháp điều khiển vector và DTC ban đầu được đề xuất cho động cơ không đồng bộ. Tuy nhiên, chúng đã được mở rộng cho tất cả các loại động cơ xoay chiều cần phải điều khiển tốc độ, như các ứng dụng servo, điều khiển chuyển động (motion control) cho robot, cơ cấu kéo, hay trong hàng không vũ trụ. Các chủng loại động cơ xoay chiều có thể kể đến là: động cơ không chổi than sức điện động hình thang (BLDCM), động cơ đồng bộ nam châm vĩnh cửu (PMSM), động cơ đồng bộ nam châm chìm (IPM), động cơ từ trở thay đổi (SRM), và động cơ tuyến tính (linear motor). Với yêu cầu ngày càng khắt khe về chất lượng và hiệu suất, các cấu hình mới của bộ biến đổi đã được đưa ra. Biến tần đa mức với các cấu hình diode kẹp, tụ bay hay cầu H, với các phương pháp chuyển mạch mềm ở dòng điện không và điện áp không (zero-current, zero-voltage switching) đã được đề xuất. Đặc biệt, biến tần ma trận (matrix converters) được bắt đầu nghiên cứu từ những năm cuối của thế kỷ 20 và trở thành một đề tài nóng hổi trong hơn hai thập kỷ qua với kỳ vọng trở thành “biến tần của thế kỷ 21”. Cấu hình này cho phép xử lý trực tiếp nguồn điện xoay chiều thay cho biến tần gián tiếp truyền thống với bộ chỉnh lưu trung gian. Nhờ vậy, kích thước của thiết bị giảm đi đáng kể và còn cho phép điều chỉnh hệ số công suất của hệ thống. Vấn đề còn lại hiện nay là nâng cao độ tin cậy trước khi có thể trở thành sản phẩm thương mại. Hành tinh của chúng ta đang đối mặt với vấn đề ấm dần lên (global warming) do hiệu ứng nhà kính, có nguồn gốc từ khí thải công nghiệp và sinh hoạt. Nguồn nguyên liệu và đặc biệt là nhiên liệu tự nhiên đang dần bị cạn kiệt. Chất lượng của cuộc sống, thậm chí sự tồn tại của nhân loại đang bị đe dọa. Hơn bao giờ hết, khoa học và công nghệ là phương tiện hữu hiệu để con người khai thác và gìn giữ thiên nhiên. Các nghiên cứu bùng nổ về năng lượng tái tạo (renewable energy) như năng lượng gió, năng lượng mặt trời, địa nhiệt và năng lượng sóng biển không chỉ là một trào lưu tr ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: