Tuning hyperparameters of self-organizing maps in combination with K nearest neighbors for IoT malware detection
Số trang: 18
Loại file: pdf
Dung lượng: 14.77 MB
Lượt xem: 22
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
In the Internet of Things, sensor devices often generate massive sensory data across multiple domains and applications. Identifying loT malware from a huge amount of such loT data is often a challenging task. In our previous studies, analytic techniques were applied to reduce dimensionality and discover valuable information from the original data.
Nội dung trích xuất từ tài liệu:
Tuning hyperparameters of self-organizing maps in combination with K nearest neighbors for IoT malware detection
Nội dung trích xuất từ tài liệu:
Tuning hyperparameters of self-organizing maps in combination with K nearest neighbors for IoT malware detection
Tìm kiếm theo từ khóa liên quan:
Hyperparameter optimization Malware detection Tuning hyperparameters Self-organizing maps K nearest neighbors IoT malware detectionGợi ý tài liệu liên quan:
-
Information retrieval techniques: Lecture 43
23 trang 31 0 0 -
Ebook Automated Machine Learning - Part 2
136 trang 23 0 0 -
Ebook OS X exploits and defense
348 trang 22 0 0 -
Enhance deep learning model for malware detection with a new image representation method
9 trang 22 0 0 -
Learning latent representation with limited labels for IoT anomaly detection
9 trang 20 0 0 -
11 trang 11 0 0
-
119 trang 8 0 0