Danh mục

Ứng dụng số phức để giải toán vật lý

Số trang: 4      Loại file: doc      Dung lượng: 462.00 KB      Lượt xem: 12      Lượt tải: 0    
Hoai.2512

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu ứng dụng số phức để giải toán vật lý, tài liệu phổ thông, vật lý phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Ứng dụng số phức để giải toán vật lý SỐ PHỨC VÀ ỨNG DỤNG SỐ PHỨC ĐỂ GIẢI TOÁN VẬT LÝ a + b1 j (a 1 + b1 j)(a 2 − b 2 j) z1 =1 = d) Thương 2 số phức : z2 a 2 + b2 j a 2 + b2 2 21) Khái niệm : z1 a 1a 2 + b1b 2 −a 1b 2 + a 2 b1 Tập hợp các số phức là tập hợp các số thực R và số j sao cho j2 = - 1 = + j ⇔ a 2 + b2 a 2 + b22) Biểu diễn số phức : z2 2 2 2 2 a) Dạng đại số : với a, b là các số thực z = a + bj Chú ý : a gọi là phần thực; b gọi là phần ảo z1 = r1(cosϕ1 + jsinϕ1) + Nếu biểu diễn số phức ở dạng lượng giác : + Nếu b = 0 thì z = a là số thực z2 = r2(cosϕ2 + jsinϕ2) + Nếu a = 0 thì z = bj là số thuần ảo z1z2 = r1r2[cos(ϕ1 + ϕ2) + jsin(ϕ1 + ϕ2)] thì : + z = 0 khi a = b = 0 z1 = r1 e jϕ1 ; z2 = r2 e jϕ2 + Nếu biểu diễn số phức ở dạng : + Hai số phức z1 = a1 + b1j và z2 = a2 + b2j bằng nhau khi a1 = a2 và b1 = b2 z1z2 = r1r2 e j( ϕ1 + ϕ 2 ) = r1r2[cos(ϕ1 + ϕ2) + jsin(ϕ1 + ϕ2)] y(truï aû) co thì : b) Dạng hình học : r = OM z1 r1 j( ϕ1 −ϕ2 ) r1 Tọa độ của r là a, b =e = [cos(ϕ1 - ϕ2) + jsin(ϕ1 - ϕ2)] và z 2 r2 r2 c) Dạng lượng giác : 4) Số phức liên hợp : b M (z) a = r cos ϕ a) Định nghĩa : → r r b = r sin ϕ + Số phức liên hợp của số phức z = a + bj là một số phức z = a - bj ϕ ...

Tài liệu được xem nhiều: