ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC - GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH
Số trang: 2
Loại file: pdf
Dung lượng: 47.98 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
CÁC KIẾN THỨC CƠ BẢNCơ sở để giải quyết vấn đề này là dùng đạo hàm để xét tính đơn điệu của hàm số và dựa vào chiều biến thiên của hàm số để kết luận về nghiệm của phương trình , bất phương trình, hệ phương trình .
Nội dung trích xuất từ tài liệu:
ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC - GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH ÖÙNG DUÏNG TÍNH ÑÔN ÑIEÄU CUÛA HAØM SOÁ ÑEÅ CHÖÙNG MINH BAÁT ÑAÚNG THÖÙC GIAÛI PHÖÔNG TRÌNH - BAÁT PHÖÔNG TRÌNH - HEÄ BAÁT PHÖÔNG TRÌNH ******** Cô sôû ñeå giaûi quyeát vaán ñeà naøy laø duøng ñaïo haøm ñeå xeùt tính ñôn ñieäu cuûa haøm soá vaø döïa vaøochieàu bieán thieân cuûa haøm soá ñeå keát luaän veà nghieäm cuûa phöông trình , baát phöông trình, heä phöông trình . CAÙC KIEÁN THÖÙC CÔ BAÛN ---------- I. Ñònh nghóa : Cho haøm soá y = f(x) xaùc ñònh trong khoaûng (a,b). a) f taêng ( hay ñoàng bieán ) treân khoaûng (a,b) ⇔ ∀ x1, x2 ∈ (a,b) : x1 < x2 ⇒ f(x1) < f(x2) b) f giaûm ( hay nghòch bieán ) treân khoaûng (a,b) ⇔ ∀ x1, x2 ∈ (a,b) : x1 < x2 ⇒ f(x1) > f(x2)II. Caùc tính chaát : 1) Tính chaát 1: Giaû söû haøm soá y = f(x) taêng (hoaëc giaûm) treân khoaûng (a,b) ta coù : f(u) = f(v) ⇔ u = v (vôùi u, v ∈ (a,b) ) 2) Tính chaát 2: Giaû söû haøm soá y = f(x) taêng treân khoaûng (a,b) ta coù : f(u) < f(v) ⇔ u < v (vôùi u, v ∈ (a,b) ) 3) Tính chaát 3: Giaû söû haøm soá y = f(x) giaûm treân khoaûng (a,b) ta coù : f(u) < f(v) ⇔ u > v (vôùi u, v ∈ (a,b) ) 4) Tính chaát 4: Neáu y = f(x) taêng treân (a,b) vaø y = g(x) laø haøm haèng hoaëc laø moät haøm soá giaûm treân (a,b) thì phöông trình f(x) = g(x) coù nhieàu nhaát moät nghieäm thuoäc khoûang (a,b) *Döïa vaøo tính chaát treân ta suy ra : Neáu coù x0 ∈ (a,b) sao cho f(x0) = g(x0) thì phöông trình f(x) = g(x) coù nghieäm duy nhaát treân (a,b) BAØI TAÄP AÙP DUÏNGBaøi 1 : Giaûi caùc phöông trình sau : 1) 4x − 1 + 4x 2 − 1 = 1 2) ( 2 − 3 ) x + ( 2 + 3 ) x = 2 x 3) log 2 (1 + 3 x ) = log 7 xBaøi 2 : Giaûi caùc phöông trình sau: 2 1) 2 x −1 − 2 x −x = ( x − 1) 2 x2 + x +3 3) log 3 ( ) = x 2 + 3x + 2 2x + 4x + 5 2 149Baøi 3 : Giaûi caùc heä : ⎧cot gx − cot gy = x − y 1) ⎨ vôùi x, y ∈ (0, π ) ⎩5x + 8y = 2π ⎧2 x − 2 y = ( y − x ).( xy + 2) ⎪ 2) ⎨ ⎪x 2 + y 2 = 2 ⎩Baøi 4: Giaûi caùc baát phöông trình sau. 1) 5x + 12x > 13x 2) x (x8 + x2 +16 ) > 6 ( 4 - x2 )Baøi 5 : Chöùng minh caùc baát ñaúng thöùc sau : 1) ex > 1+x vôùi x > 0 2) ln (1 + x ) < x vôùi x > 0 3) sinx < x vôùi x > 0 1 2 4) 1 - x < cosx vôùi x ≠ 0 2 ------Heát------- 150
Nội dung trích xuất từ tài liệu:
ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC - GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH ÖÙNG DUÏNG TÍNH ÑÔN ÑIEÄU CUÛA HAØM SOÁ ÑEÅ CHÖÙNG MINH BAÁT ÑAÚNG THÖÙC GIAÛI PHÖÔNG TRÌNH - BAÁT PHÖÔNG TRÌNH - HEÄ BAÁT PHÖÔNG TRÌNH ******** Cô sôû ñeå giaûi quyeát vaán ñeà naøy laø duøng ñaïo haøm ñeå xeùt tính ñôn ñieäu cuûa haøm soá vaø döïa vaøochieàu bieán thieân cuûa haøm soá ñeå keát luaän veà nghieäm cuûa phöông trình , baát phöông trình, heä phöông trình . CAÙC KIEÁN THÖÙC CÔ BAÛN ---------- I. Ñònh nghóa : Cho haøm soá y = f(x) xaùc ñònh trong khoaûng (a,b). a) f taêng ( hay ñoàng bieán ) treân khoaûng (a,b) ⇔ ∀ x1, x2 ∈ (a,b) : x1 < x2 ⇒ f(x1) < f(x2) b) f giaûm ( hay nghòch bieán ) treân khoaûng (a,b) ⇔ ∀ x1, x2 ∈ (a,b) : x1 < x2 ⇒ f(x1) > f(x2)II. Caùc tính chaát : 1) Tính chaát 1: Giaû söû haøm soá y = f(x) taêng (hoaëc giaûm) treân khoaûng (a,b) ta coù : f(u) = f(v) ⇔ u = v (vôùi u, v ∈ (a,b) ) 2) Tính chaát 2: Giaû söû haøm soá y = f(x) taêng treân khoaûng (a,b) ta coù : f(u) < f(v) ⇔ u < v (vôùi u, v ∈ (a,b) ) 3) Tính chaát 3: Giaû söû haøm soá y = f(x) giaûm treân khoaûng (a,b) ta coù : f(u) < f(v) ⇔ u > v (vôùi u, v ∈ (a,b) ) 4) Tính chaát 4: Neáu y = f(x) taêng treân (a,b) vaø y = g(x) laø haøm haèng hoaëc laø moät haøm soá giaûm treân (a,b) thì phöông trình f(x) = g(x) coù nhieàu nhaát moät nghieäm thuoäc khoûang (a,b) *Döïa vaøo tính chaát treân ta suy ra : Neáu coù x0 ∈ (a,b) sao cho f(x0) = g(x0) thì phöông trình f(x) = g(x) coù nghieäm duy nhaát treân (a,b) BAØI TAÄP AÙP DUÏNGBaøi 1 : Giaûi caùc phöông trình sau : 1) 4x − 1 + 4x 2 − 1 = 1 2) ( 2 − 3 ) x + ( 2 + 3 ) x = 2 x 3) log 2 (1 + 3 x ) = log 7 xBaøi 2 : Giaûi caùc phöông trình sau: 2 1) 2 x −1 − 2 x −x = ( x − 1) 2 x2 + x +3 3) log 3 ( ) = x 2 + 3x + 2 2x + 4x + 5 2 149Baøi 3 : Giaûi caùc heä : ⎧cot gx − cot gy = x − y 1) ⎨ vôùi x, y ∈ (0, π ) ⎩5x + 8y = 2π ⎧2 x − 2 y = ( y − x ).( xy + 2) ⎪ 2) ⎨ ⎪x 2 + y 2 = 2 ⎩Baøi 4: Giaûi caùc baát phöông trình sau. 1) 5x + 12x > 13x 2) x (x8 + x2 +16 ) > 6 ( 4 - x2 )Baøi 5 : Chöùng minh caùc baát ñaúng thöùc sau : 1) ex > 1+x vôùi x > 0 2) ln (1 + x ) < x vôùi x > 0 3) sinx < x vôùi x > 0 1 2 4) 1 - x < cosx vôùi x ≠ 0 2 ------Heát------- 150
Tìm kiếm theo từ khóa liên quan:
nghiệm của phương trình bất phương trình hệ phương trình ôn tập toán học ôn thi toán đại học tính đơn điệu của hàm số chứng minh bất đẳng thức hệ phương trìnhGợi ý tài liệu liên quan:
-
133 trang 60 0 0
-
Giáo án Đại số lớp 9 (Học kì 2)
81 trang 41 0 0 -
Đề cương ôn tập học kì 1 môn Toán lớp 12 năm 2023-2024 - Trường THPT Gia Viễn
91 trang 40 0 0 -
Tuyển tập các bài toán từ đề thi chọn đội tuyển các tỉnh-thành phố năm học 2018-2019
55 trang 37 0 0 -
Chuyên đề Hệ phương trình Toán 11
151 trang 34 0 0 -
Bài giảng Toán cao cấp - Vũ Khắc Bảy
136 trang 32 0 0 -
Đề thi kết thúc học phần Đại số tuyến tính năm 2019 - Đề số 12 (26/08/2019)
1 trang 32 0 0 -
Công phá môn Toán 8+ đề thi vào lớp 10
270 trang 30 0 0 -
Đề cương ôn tập giữa học kì 1 môn Toán lớp 12 năm 2023-2024 - Trường THPT Việt Đức, Hà Nội
19 trang 29 0 0 -
Đề thi kết thúc học phần Đại số tuyến tính năm 2018 - Đề số 2 (28/12/2018)
1 trang 28 0 0