Danh mục

Using sum match kernel with balanced label tree for large scale image classification

Số trang: 20      Loại file: pdf      Dung lượng: 529.16 KB      Lượt xem: 15      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

In addition, a feature map is used to reformulate the sum-match kernel function as a dot product of two mean feature vectors in a mapped-feature space. Furthermore, we proposed an algorithm for learning a balanced tree which gains the computational efficiency in classification. We carried out experiments on benchmark datasets including Caltech-256, SUN-397, and ImageNet-1K. The evaluation results indicated that our method achieves a significant improvement in terms of accuracy and efficiency compared to other methods. In particular, our method achieved 14.52% in accuracy on ImageNet-1K, compared to 6.51% of the Bengio et al.’s method.
Nội dung trích xuất từ tài liệu:
Using sum match kernel with balanced label tree for large scale image classification

Tài liệu được xem nhiều: