Vận hành hệ thống điện - Chương 2: Tính toán phân bố tối ưu công suất trong hệ thống điện bằng phương pháp Lagrange
Số trang: 0
Loại file: pdf
Dung lượng: 417.52 KB
Lượt xem: 39
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu trình bày bài toán Lagrange; phân bố tối ưu công suất giữa các nhà máy nhiệt điện; thủ tục phân phối tối ưu công suất trong hệ thống điện bằng phương pháp Lagrange.
Nội dung trích xuất từ tài liệu:
Vận hành hệ thống điện - Chương 2: Tính toán phân bố tối ưu công suất trong hệ thống điện bằng phương pháp Lagrange Män hoüc: Váûn haình Hãû thäúng âiãûn Chæång 2 TÊNH TOAÏN PHÁN BÄÚ TÄÚI ÆU CÄNG SUÁÚT TRONG HÃÛ THÄÚNG ÂIÃÛN BÀÒNG PHÆÅNG PHAÏP LAGRANGE 2.1. MÅÍ ÂÁÖU Cáön phaíi xaïc âënh sæû phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn trong hãû thäúng âiãûn ( coï thãø chè coï caïc nhaì maïy nhiãût âiãûn , hoàûc coï caí nhæîng nhaì maïy thuíy âiãûn ) âuí âaïp æïng mäüt giaï trë phuû taè täøng cho træåïc (kãø caí caïc täøn tháút) nhàòm náng cao tênh váûn haình kinh tãú cuía hãû thäúng âiãûn . Âáy laì baìi toïan âa chè tiãu: - Chi phê nhiãn liãûu täøng trong toìan hãû thäúng laì nhoí nháút (min) - Âaím baío âäü tin cáûy håüp lyï - Cháút læåüng âiãûn nàng âaím baío... Giaíi quyãút baìi toïan âa chè tiãu nhæ váûy hiãûn nay chæa coï mäüt mä hçnh toïan hoüc chàût cheí, maì thæåìng chè giaíi quyãút caïc baìi toïan riãng biãût, sau âoï kãút håüp laûi. Vç váûy baìi toïan phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn thæåìng chè xeït âaût muûc tiãu quan troüng laì chi phê nhiãn liãûu täøng trong toìan hãû thäúng laì nhoí nháút. 2.2. BAÌI TOÏAN LAGRANGE: Baìi toïan âæåüc phaït biãøu nhæ sau: Cáön phaíi xaïc âënh caïc áøn säú x1, x2,..., xi,........ ,xn sao cho âaût cæûc trë haìm muûc tiãu : F(x1, x2,..., xj,........ ,xn)→ min (max) (2-1) vaì thoía maín m âiãöu kiãûn raìng buäüc: (m Män hoüc: Váûn haình Hãû thäúng âiãûn Baìi giaíi : x1 x2 6 − 3x1 Tæì + =1 suy ra x2 = 2 3 2 Thay vaìo haìm muûc tiãu F : ⎛ 6 − 3 x1 ⎞ 2 F ( x1 , x 2 ) = x + x = x + ⎜ 2 1 2 2 2 1 ⎟ → min ⎝ 2 ⎠ Âiãöu kiãûn cæûc trë : ∂F =0 ∂x1 ∂F 18 hoàûc laì : = 2 x1 − (2 − x1 ) = 0 ∂x1 4 giaíi ra âæåüc : x1 = 18/13 vaì x2 = 12/13 Xeït âaûo haìm cáúp 2 : ∂ 2F 18 26 = 2+ = >0 ∂x1 2 4 4 18 12 nãn haìm F âaût cæûc trë taûi : x1* = vaì x2* = 13 13 vaì khi âoï giaï trë haìm muûc tiãu laì : 36 * Fopt = 13 Phæång phaïp thay thãú træûc tiãúp trãn âáy chè tiãûn låüi khi hãû phæång trçnh raìng buäüc laì tuyãún tênh vaì säú læåüng m khäng låïn làõm. Trong træåìng håüp chung âãø giaíi baìi toaïn xaïc âënh cæûc trë coï raìng buäüc laì âàóng thæïc vaì tuyãún tênh thæåìng sæí duûng räüng raîi phæång phaïp nhán tæí Lagrange . Näüi dung chuí yãúu cuía phæång phaïp Lagrange nhæ sau: Cáön phaíi xaïc âënh caïc áøn säú x1, x2,..., xj,........ ,xn sao cho: F(x1, x2,..., xj,........ ,xn) → min (max) (2-3) vaì thoía maîn g1(x1, x2,..., xj,........ ,xn) = 0 g2(x1, x2,..., xj,........ ,xn) = 0 ........................................ (2-4) gm(x1, x2,..., xj,........ ,xn) = 0 trong âoï m Män hoüc: Váûn haình Hãû thäúng âiãûn Nghiãûm täúi æu X*opt cuía haìm muûc tiãu F cuîng chênh laì nghiãûm täúi æu cuía haìm Lagrange L(X) vaì ngæåüc laûi vç gi(x1, x2,..., xi,........ ,xn) = 0 våïi moüi i=1..m. Vç váûy ta cánö tçm låìi giaíi t ...
Nội dung trích xuất từ tài liệu:
Vận hành hệ thống điện - Chương 2: Tính toán phân bố tối ưu công suất trong hệ thống điện bằng phương pháp Lagrange Män hoüc: Váûn haình Hãû thäúng âiãûn Chæång 2 TÊNH TOAÏN PHÁN BÄÚ TÄÚI ÆU CÄNG SUÁÚT TRONG HÃÛ THÄÚNG ÂIÃÛN BÀÒNG PHÆÅNG PHAÏP LAGRANGE 2.1. MÅÍ ÂÁÖU Cáön phaíi xaïc âënh sæû phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn trong hãû thäúng âiãûn ( coï thãø chè coï caïc nhaì maïy nhiãût âiãûn , hoàûc coï caí nhæîng nhaì maïy thuíy âiãûn ) âuí âaïp æïng mäüt giaï trë phuû taè täøng cho træåïc (kãø caí caïc täøn tháút) nhàòm náng cao tênh váûn haình kinh tãú cuía hãû thäúng âiãûn . Âáy laì baìi toïan âa chè tiãu: - Chi phê nhiãn liãûu täøng trong toìan hãû thäúng laì nhoí nháút (min) - Âaím baío âäü tin cáûy håüp lyï - Cháút læåüng âiãûn nàng âaím baío... Giaíi quyãút baìi toïan âa chè tiãu nhæ váûy hiãûn nay chæa coï mäüt mä hçnh toïan hoüc chàût cheí, maì thæåìng chè giaíi quyãút caïc baìi toïan riãng biãût, sau âoï kãút håüp laûi. Vç váûy baìi toïan phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn thæåìng chè xeït âaût muûc tiãu quan troüng laì chi phê nhiãn liãûu täøng trong toìan hãû thäúng laì nhoí nháút. 2.2. BAÌI TOÏAN LAGRANGE: Baìi toïan âæåüc phaït biãøu nhæ sau: Cáön phaíi xaïc âënh caïc áøn säú x1, x2,..., xi,........ ,xn sao cho âaût cæûc trë haìm muûc tiãu : F(x1, x2,..., xj,........ ,xn)→ min (max) (2-1) vaì thoía maín m âiãöu kiãûn raìng buäüc: (m Män hoüc: Váûn haình Hãû thäúng âiãûn Baìi giaíi : x1 x2 6 − 3x1 Tæì + =1 suy ra x2 = 2 3 2 Thay vaìo haìm muûc tiãu F : ⎛ 6 − 3 x1 ⎞ 2 F ( x1 , x 2 ) = x + x = x + ⎜ 2 1 2 2 2 1 ⎟ → min ⎝ 2 ⎠ Âiãöu kiãûn cæûc trë : ∂F =0 ∂x1 ∂F 18 hoàûc laì : = 2 x1 − (2 − x1 ) = 0 ∂x1 4 giaíi ra âæåüc : x1 = 18/13 vaì x2 = 12/13 Xeït âaûo haìm cáúp 2 : ∂ 2F 18 26 = 2+ = >0 ∂x1 2 4 4 18 12 nãn haìm F âaût cæûc trë taûi : x1* = vaì x2* = 13 13 vaì khi âoï giaï trë haìm muûc tiãu laì : 36 * Fopt = 13 Phæång phaïp thay thãú træûc tiãúp trãn âáy chè tiãûn låüi khi hãû phæång trçnh raìng buäüc laì tuyãún tênh vaì säú læåüng m khäng låïn làõm. Trong træåìng håüp chung âãø giaíi baìi toaïn xaïc âënh cæûc trë coï raìng buäüc laì âàóng thæïc vaì tuyãún tênh thæåìng sæí duûng räüng raîi phæång phaïp nhán tæí Lagrange . Näüi dung chuí yãúu cuía phæång phaïp Lagrange nhæ sau: Cáön phaíi xaïc âënh caïc áøn säú x1, x2,..., xj,........ ,xn sao cho: F(x1, x2,..., xj,........ ,xn) → min (max) (2-3) vaì thoía maîn g1(x1, x2,..., xj,........ ,xn) = 0 g2(x1, x2,..., xj,........ ,xn) = 0 ........................................ (2-4) gm(x1, x2,..., xj,........ ,xn) = 0 trong âoï m Män hoüc: Váûn haình Hãû thäúng âiãûn Nghiãûm täúi æu X*opt cuía haìm muûc tiãu F cuîng chênh laì nghiãûm täúi æu cuía haìm Lagrange L(X) vaì ngæåüc laûi vç gi(x1, x2,..., xi,........ ,xn) = 0 våïi moüi i=1..m. Vç váûy ta cánö tçm låìi giaíi t ...
Tìm kiếm theo từ khóa liên quan:
Vận hành hệ thống điện Tối ưu công suất Công suất hệ thống điện Phương pháp Lagrange Bài toán LagrangeGợi ý tài liệu liên quan:
-
3 trang 213 0 0
-
Thiết kế bộ điều khiển mờ kết hợp AVR và PSS nâng cao chất lượng quá trình quá độ của hệ thống điện
6 trang 178 0 0 -
Giáo trình Vận hành hệ thống điện: Phần 2
112 trang 166 0 0 -
627 trang 159 1 0
-
27 trang 131 0 0
-
Giáo trình Vận hành và điều khiển hệ thống điện: Phần 2
121 trang 101 0 0 -
578 trang 100 0 0
-
Phương pháp phân tích kinh tế của hệ thống điện mặt trời áp mái
4 trang 91 0 0 -
Chiến lược nâng cao quán tính hệ thống mặt trời nối lưới thông qua điều khiển giảm tải
6 trang 88 0 0 -
Báo cáo thực tập tốt nghiệp ngành Hệ thống điện lưới
33 trang 82 0 0