Thông tin tài liệu:
Tham khảo tài liệu 63 đề thi thử đại học 2011 - đề số 49, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
63 Đề thi thử Đại học 2011 - Đề số 4963 Đề thi thử Đại học 2011 B 2;3; 1 hoặc B 3;1; 2 AB DC D 5;3; 4 hoặc D 4;5; 3 Câu VII.b: 3 1 x 1 x3 2 ĐK: x 1 x 2 2 x 1 3 x3 2 x 2 3 x3 2 x 3 6x 2 12x 8 x 3 2 2 6 x 1 0 Suy ra: x 1 là nghiệm của PT. THỬ SỨC TRƯỚC KÌ THI THTT SỐ 401-11/2010 ĐỀ SỐ 02 Thời gian làm bài 180 phút PHẦN CHUNG Câu I: Cho hàm số: y 2x 3 3x 2 1 (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2) Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8. Câu II: xy 18 12 x 2 1) Giải hệ phương trình: 12 xy 9 y 3 2) Giải phương trình: 4 x 12 2x 11 x 0 x Câu III: Tính thể tích khối chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng cách giữa cạnh bên và cạnh đáy đối diện bằng m. Câu IV: Tính tích phân: I x cos x sin 5 x dx 0 Câu V: -238- http://www.VNMATH.com63 Đề thi thử Đại học 2011 a a c b 2 Cho tam giác ABC, với BC = a, AC = b, AB = c thỏa mãn điều kiện 2 b b a c 111 Chứng minh rằng: abc . PHẦN RIÊNG Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a: 1) Trong mặt phẳng tọa độ (Oxy) cho đường thẳng (d) : 3x 4y 5 0 và đường tròn (C): x 2 y 2 2x 6y 9 0 . Tìm những điểm M thuộc (C) và N thuộc (d) sao cho MN có độ dài nhỏ nhất. 2) Trong không gian với hệ tọa độ Descartes Oxyz cho hai mặt phẳng (P1): x 2y 2z 3 0 , x2 y z4 (P2): 2x y 2z 4 0 và đường thẳng (d): . Lập phương trình mặt cầu 1 2 3 (S) có tâm I thuộc (d) và tiếp xúc với hai mặt phẳng (P 1) và (P2). Câu VII.a: 4 Đặt 1 x x 2 x 3 a 0 a1x a 2 x 2 ... a12 x12 . Tính hệ số a7. B. Theo chương trình nâng cao Câu VI.b: 1 7 2 2 1) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x 1 y 3 1 và điểm M ; . 5 5 Tìm trên (C) những điểm N sao cho MN có độ dài lớn nhất. 2) Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): x 2 y 2 z 2 2x 4y 2z 5 0 và mặt phẳng (P): x 2y 2z 3 0 . Tìm những điểm M thuộc (S), N thuộc (P) sao cho MN có độ dài nhỏ nhất. Câu VII.b: Dùng định nghĩa, tính đạo hàm của hàm số: x 0 0 , 3 f x 1 3x 1 2x tại điểm x0 = 0. x0 , x HƯỚNG DẪN GIẢI VÀ ĐÁP SỐ PHẦN CHUNG Câu I: 1) Tự giải -239- http://www.VNMATH.com63 Đề thi thử Đại học 2011 2) y 2x 3 3x 2 1 y 6x 2 6x Gọi M x 0 ; y 0 Phương trình tiếp tuyến: y 6x 0 6x 0 x x 0 y 0 2 Hay y 6x 0 6x 0 x 6x 3 6x 0 2x 0 3x 0 1 2 2 3 2 0 Tiếp tuyến này có tung độ bằng 8 6x 3 6x 2 2x 3 3x 0 1 8 2 0 0 0 Giải ra được: x 0 1 y 0 4 Vậy M 1; 4 Câu II: 1) ĐK: x 2 3, xy 0 xy 18 12 x 2 xy 30 x 2 (1) - Nếu xy 18 thì ta có hệ: 1 2 2 3xy 27 y (2) xy 9 y 3 2 Lấy (2) trừ (1): 2xy 3 x 2 y 2 x y 3 x y 3 Với x y 3 y x 3 , thay vào (1): 53 x x 3 30 x 2 2x 2 3x 30 0 x (loại) hoặc x 2 3 (nhận) 2 Nghiệm 2 3; 3 3 Với x y 3 ...