Danh mục

A hybrid model for predicting missile impact damages based on K-nearest neighbors and bayesian optimization

Số trang: 14      Loại file: pdf      Dung lượng: 3.84 MB      Lượt xem: 12      Lượt tải: 0    
Thư viện của tui

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

This study proposed a hybrid machine learning model which is based on k-nearest neighbors (KNN) and Bayesian optimization (BO), named as BOKNN, for predicting the local damages of reinforced concrete (RC) panels under missile impact loading. In the proposed BO-KNN, the hyperparameters of the KNN were optimized by using the BO which is a wellestablished optimization algorithm. Accordingly, the KNN was trained on an experimental dataset that consists of 254 impact tests to predict four levels (or classes) of damages including perforation, scabbing, penetration, and no damage.
Nội dung trích xuất từ tài liệu:
A hybrid model for predicting missile impact damages based on K-nearest neighbors and bayesian optimization

Tài liệu được xem nhiều: