Antennas with Non-Foster Matching Networks phần 3
Số trang: 10
Loại file: pdf
Dung lượng: 241.71 KB
Lượt xem: 18
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu antennas with non-foster matching networks phần 3, kỹ thuật - công nghệ, kĩ thuật viễn thông phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Antennas with Non-Foster Matching Networks phần 3P1: RVMMOBK060-01 MOBK060-Aberle.cls January 19, 2007 17:23 16 ANTENNAS WITH NON-FOSTER MATCHING NETWORKS − (La + Lm ) Z0 −Ca Lm Z0 Active matching Two-port model of network antenna FIGURE 12: Antenna with active matching network using non-Foster reactances PERFORMANCE OF ESA WITH IDEAL NON-FOSTER MATCHING NETWORK A conceptual representation of the simplified ideal active matching network together with the two-port antenna model is shown conceptually in Fig. 12. The design equations for the components of the active matching network can be readily extracted from [3, 4] as follows. To design the active matching network, we first fit the antenna impedance to a simple model. Since the antenna is an electrically small monopole, the real part of the antenna impedance is assumed to vary as the square of frequency, and the imaginary part is modeled as a series LC. ¯ This simple model predicts an impedance that is denoted as Za and given by 2 ω 1 ¯ Za = R0 + j ω La − . (22) ω0 ωC a The parameters of the model may be obtained from the “actual” antenna impedance Za (ob- tained from simulation or measurement) as R0 = Re { Za (ω0 )} ⎤⎧ ⎫ ⎡ ⎧ ⎫ −1 ⎪ La ⎪ ⎪ ⎪ ⎪ Im { Za (ω1 )} ⎪ ω1 ⎨ ⎬ ⎨ ⎬ (23) ⎢ ω1 ⎥ ⎢ ⎥ = . ⎣ −1 ⎦ ⎪ 1 ⎪ ⎪ ⎩ Im { Z (ω )} ⎪ ⎪ ⎪ ⎭ ω2 ⎩ ⎭ ω2 2 a Ca where ω0 is the design frequency (in radians per second), ω1 and ω2 define the band of frequencies over which the model is being applied, and Re ( Za ) and Im ( Za ) are the real and imaginaryP1: RVMMOBK060-01 MOBK060-Aberle.cls January 19, 2007 17:23 ANTENNAS WITH NON-FOSTER MATCHING NETWORKS 17 parts of the antenna impedance respectively. The last of the necessary design equations is √ R0 Z0 Lm = . (24) ω0 Basically, the active matching network works by canceling the antenna’s reactance over a broad- band using negative impedance elements, and then using a transformer section consisting of – Lm in series and Lm in shunt to match the real part of the antenna impedance (with its frequency-squared dependence) to the desired impedance level ( Z0 ) over a broadband. Using the above design equations with ω1 = 2π × 50 MHz and ω2 = 2π × 70 MHz, we obtain the following component values for the active matching network: Ca = 8.657 pF ...
Nội dung trích xuất từ tài liệu:
Antennas with Non-Foster Matching Networks phần 3P1: RVMMOBK060-01 MOBK060-Aberle.cls January 19, 2007 17:23 16 ANTENNAS WITH NON-FOSTER MATCHING NETWORKS − (La + Lm ) Z0 −Ca Lm Z0 Active matching Two-port model of network antenna FIGURE 12: Antenna with active matching network using non-Foster reactances PERFORMANCE OF ESA WITH IDEAL NON-FOSTER MATCHING NETWORK A conceptual representation of the simplified ideal active matching network together with the two-port antenna model is shown conceptually in Fig. 12. The design equations for the components of the active matching network can be readily extracted from [3, 4] as follows. To design the active matching network, we first fit the antenna impedance to a simple model. Since the antenna is an electrically small monopole, the real part of the antenna impedance is assumed to vary as the square of frequency, and the imaginary part is modeled as a series LC. ¯ This simple model predicts an impedance that is denoted as Za and given by 2 ω 1 ¯ Za = R0 + j ω La − . (22) ω0 ωC a The parameters of the model may be obtained from the “actual” antenna impedance Za (ob- tained from simulation or measurement) as R0 = Re { Za (ω0 )} ⎤⎧ ⎫ ⎡ ⎧ ⎫ −1 ⎪ La ⎪ ⎪ ⎪ ⎪ Im { Za (ω1 )} ⎪ ω1 ⎨ ⎬ ⎨ ⎬ (23) ⎢ ω1 ⎥ ⎢ ⎥ = . ⎣ −1 ⎦ ⎪ 1 ⎪ ⎪ ⎩ Im { Z (ω )} ⎪ ⎪ ⎪ ⎭ ω2 ⎩ ⎭ ω2 2 a Ca where ω0 is the design frequency (in radians per second), ω1 and ω2 define the band of frequencies over which the model is being applied, and Re ( Za ) and Im ( Za ) are the real and imaginaryP1: RVMMOBK060-01 MOBK060-Aberle.cls January 19, 2007 17:23 ANTENNAS WITH NON-FOSTER MATCHING NETWORKS 17 parts of the antenna impedance respectively. The last of the necessary design equations is √ R0 Z0 Lm = . (24) ω0 Basically, the active matching network works by canceling the antenna’s reactance over a broad- band using negative impedance elements, and then using a transformer section consisting of – Lm in series and Lm in shunt to match the real part of the antenna impedance (with its frequency-squared dependence) to the desired impedance level ( Z0 ) over a broadband. Using the above design equations with ω1 = 2π × 50 MHz and ω2 = 2π × 70 MHz, we obtain the following component values for the active matching network: Ca = 8.657 pF ...
Tìm kiếm theo từ khóa liên quan:
Lý thuyết viễn thông kỹ thuật điên tử kỹ thuật viễn thông thông tin viễn thông tài liệu viễn thông.Tài liệu liên quan:
-
Đề cương chi tiết học phần Trí tuệ nhân tạo
12 trang 444 0 0 -
Đề cương chi tiết học phần Vi xử lý
12 trang 300 0 0 -
Giáo trình Kỹ thuật điện tử (Nghề: Điện công nghiệp - Cao đẳng) - Trường Cao đẳng Cơ giới (2023)
239 trang 246 0 0 -
79 trang 231 0 0
-
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 220 0 0 -
102 trang 196 0 0
-
Luận văn Thạc sĩ Kỹ thuật: Ứng dụng Blockchain trong bảo mật IoT
90 trang 193 1 0 -
94 trang 171 0 0
-
Hệ thống sưởi - thông gió - điều hòa không khí - Thực hành kỹ thuật điện - điện tử: Phần 1
109 trang 159 0 0 -
83 trang 158 0 0