Application of D-optimal mixture design and artificial neural network in optimizing the composition of flours for preparation of gluten free bread
Số trang: 10
Loại file: pdf
Dung lượng: 1.87 MB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Based on the value of mean squared error, absolute average deviation and coefficient of determination, the ANN model was found superior to DMD models in predicting the value of responses. The optimum composition of flour obtained using the DMD method was 69.44 g of PMF, 21 g of RLF and 9.56 g of MLF, whereas using the ANNGA technique, it was 68.25 g of PMF, 23.12 g of RLF and 8.63 g of MLF.
Nội dung trích xuất từ tài liệu:
Application of D-optimal mixture design and artificial neural network in optimizing the composition of flours for preparation of gluten free bread
Nội dung trích xuất từ tài liệu:
Application of D-optimal mixture design and artificial neural network in optimizing the composition of flours for preparation of gluten free bread
Tìm kiếm theo từ khóa liên quan:
Biotechnology and food sciences D-optimal mixture design Artificial neural network Optimizing the composition of flours Gluten free breadTài liệu liên quan:
-
Short-term load forecasting using long short-term memory network
4 trang 50 0 0 -
Applications of artificial neural network in textiles
10 trang 33 0 0 -
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 8 - Nguyễn Nhật Quang
69 trang 32 0 0 -
Artificial intelligence approach to predict the dynamic modulus of asphalt concrete mixtures
10 trang 31 0 0 -
8 trang 28 0 0
-
Ebook Sustainable construction and building materials: Select proceedings of ICSCBM 2018 - Part 2
446 trang 26 0 0 -
Sử dụng mạng nơron thần kinh nhân tạo để tính toán, dự đoán diện tích gương hầm sau khi nổ mìn
8 trang 25 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 8
68 trang 24 0 0 -
Short-term load forecasting of buildings based on artificial neural network and clustering technique
13 trang 22 0 0 -
Mạng thần kinh thường xuyên cho dự đoán P2
21 trang 19 0 0