Artificial neural network model to predict post-hepatectomy early recurrence of hepatocellular carcinoma without macroscopic vascular invasion
Số trang: 13
Loại file: pdf
Dung lượng: 2.59 MB
Lượt xem: 9
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
The accurate prediction of post-hepatectomy early recurrence (PHER) of hepatocellular carcinoma (HCC) is vital in determining postoperative adjuvant treatment and monitoring. This study aimed to develop and validate an artificial neural network (ANN) model to predict PHER in HCC patients without macroscopic vascular invasion.
Nội dung trích xuất từ tài liệu:
Artificial neural network model to predict post-hepatectomy early recurrence of hepatocellular carcinoma without macroscopic vascular invasion
Nội dung trích xuất từ tài liệu:
Artificial neural network model to predict post-hepatectomy early recurrence of hepatocellular carcinoma without macroscopic vascular invasion
Tìm kiếm theo từ khóa liên quan:
BMC Cancer Hepatocellular carcinoma Curative hepatectomy Early recurrence Prognostic factors Artificial neural networkGợi ý tài liệu liên quan:
-
Differences between physician and patient preferences for cancer treatments: A systematic review
13 trang 167 0 0 -
6 trang 166 0 0
-
Immune checkpoint inhibitors and their impact on liver enzymes and attenuation
7 trang 139 0 0 -
2011–2021 rising prevalence of HPV infection among oropharyngeal carcinoma in France
9 trang 109 0 0 -
12 trang 87 0 0
-
19 trang 72 0 0
-
17 trang 60 0 0
-
Short-term load forecasting using long short-term memory network
4 trang 48 0 0 -
11 trang 35 0 0
-
9 trang 35 0 0