Danh mục

Bài giảng Đồ họa hiện thực ảo: Bài 7 - Lê Tấn Hùng

Số trang: 11      Loại file: pdf      Dung lượng: 1.05 MB      Lượt xem: 22      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng "Đồ họa hiện thực ảo - Bài 7: Đường cong trong không gian" cung cấp cho người học các kiến thức: Đường cong, phân loại đường cong, biểu diễn đường cong, đường tham chiếu, đường cong Hermite,... Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Đồ họa hiện thực ảo: Bài 7 - Lê Tấn Hùng CNTT-DHBK Hanoi hunglt@it-hut.edu.vn Đường cong - Curve Đường cong trong không gian 3D CURVE Why use curves? Quỹ đạo chuyển động của 1 điểm trong không gian Đường cong biểu diễn Điểm -curve represents points: Điểm Biểu diễnvà kiểm soát đường cong -Points represent- and control-the curve. Cách tiếp cận này là cơ sở của lĩnh vực Computer Aided Geometric Design (CAGD). (c) SE/FIT/HUT 2002 (c) SE/FIT/HUT 2002 2 Phân loại Biểu diễn Đường cong Trên cơ sở ràng buộc giữa điểm và đường trong cả ứng dụng khoa học và Tường minh y=f(x) thiết kế ta co thể phân làm 2 loại: y = f(x), z = g(x) impossible to get multiple values for a single Xấp xỉ-Approximation - x • break curves like circles and ellipses into segments not invariant with rotation Được ứng dụng trong mô hình hoá hình học • rotation might require further segment breaking Nội suy-Interpolation problem with curves with vertical tangents • infinite slope is difficult to represent Không tường minh f(x,y)=0 - Implicit equations: f(x,y,z) = 0 Trong thiết kế nôi suy là cần thiết với các đối tượng nhưng không phù hợp equation may have more solutions than we want với các đối tượng có hình dáng bất kỳ 'free form“. • circle: x² + y² = 1, half circle: ? problem to join curve segments together • difficult to determine if their tangent directions agree at their joint point (c) SE/FIT/HUT 2002 3 (c) SE/FIT/HUT 2002 4 Đường cong tham biến Parametric Curves Biểu diễn các đường cong tham biến Parametric representation: We have seen the parametric form for a line: x = x(t), y = y(t), z = z(t) overcomes problems with explicit and implicit forms x = x0t + (1 − t ) x1 no geometric slopes (which may be infinite) parametric tangent vectors instead (never infinite) y = y0t + (1 − t ) y1 a curve is approximated by a piecewise polynomial curve z = z0t + (1 − t ) z1 Define a parameter space Note that x, y and z are each given by an equation that 1D for curves involves: 2D for surfaces The parameter t Define a mapping from parameter space to 3D points A function that takes parameter values and gives back 3D points Some user specified control points, x0 and x1 The result is a parametric curve or surface This is an example of a parametric curve Mapping F :t → (x, y, z) 0 1 t (c) SE/FIT/HUT 2002 5 (c) SE/FIT/HUT 2002 6 CuuDuongThanCong.com https://fb.com/tailieudientucntt ...

Tài liệu được xem nhiều: