Danh mục

Bài giảng Khái niệm phép dời hình, hai hình bằng nhau - Hình học 11 - GV. Trần Thiên

Số trang: 17      Loại file: ppt      Dung lượng: 392.50 KB      Lượt xem: 7      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: 16,000 VND Tải xuống file đầy đủ (17 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Khái niệm về phép dời hình và hai hình bằng nhau giúp học sinh nắm được định nghĩa và các tính chất của phép dời hình. Nắm được định nghĩa của hai hình bằng nhau. Vẽ được ảnh của một hình đơn giản qua phép dời hình. Bước đầu vận dụng phép dời hình trong một số bài tập đơn giản.
Nội dung trích xuất từ tài liệu:
Bài giảng Khái niệm phép dời hình, hai hình bằng nhau - Hình học 11 - GV. Trần Thiên BÀI GIẢNG HÌNH HỌC 11CHƯƠNG I: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG BÀI 6: KHÁI NIỆM VỀPHÉP DỜI HÌNH VÀ HAI HÌNH BẰNG NHAUI. KHÁI NIỆM VỀ PHÉP DỜI HÌNH Định nghĩa (sgk) Như vậy: i hình là phép hìnhn F(M)=M’o toàn khoảng Phép dờ Nếu phép biến biế : hình bả và F(N)=N’ thì cách giữMN=M’N’m bất kì. a hai điể Nhận xét: 1).Các phép đồng nhất,đối xứng trục,đối xứng tâm và phép quay đều là phép dời hình. 2). Phép biến hình có được bằng cách thực hiện liên tiếp hai phép dời hình cũng là một phép dời hình.. NX1NX2I. KHÁI NIỆM VỀ PHÉP DỜI HÌNH Định nghĩa (sgk) Như vậy: Nếu phép biến hình F(M)=M’ và F(N)=N’ thì MN=M’N’ Nhận xét: 1).Các phép đồng nhất,đối xứng trục,đối xứng tâm và phép quay đều là phép dời hình. 2). Phép biến hình có được bằng cách thực hiện liên tiếp hai hay nhiều phép dời hình cũng là một phép dời hình.Ví du1ï Hình 1.39 a)Ví du1ï Hình 1.39 b)Hình 1.42Hình 1.41 Ví dụ 2 r Trong mp Oxy ,cho v( 2;0) và điểm M(1;1). Tìm toạ độ của điểm M’ là ảnh của điểm M có được bằng cách thực hiện liên tiếp Ñoyvaø v TrGiải: Goï M 1= oy (M) i Ñ { xM1 = − xM = − 1 yM1 = yM = 1 � M1 ( − 1 ) ;1 Ta coù M=Tv (M 1) : r { xM = xM 1 + xv = 1 r yM = yM + xv = 1 r M( 1 ) ;1 Vaä M( 1 ) y ;1I. KHÁI NIỆM VỀ PHÉP BIẾN HÌNHII. TÍNH CHẤT (Sgk) Phép dời hình: 1). Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và . bảo toàn thứ tự giữa 2). điểm. cácBiến đường thẳng thành đường thẳng ,biến tia thành . tia,biến đoạn thẳng thành đoạn thẳng bằng nó . 3). Biến tam giác thành tam giác thành ta giác bằng nó,biến . góc thành góc bằng nó. 4). Biến đường tròn thành đường tròn có cùng bán kính.Chứng minh tính chất 1: A B C   Phép dời hình F biến ba điểm C’ A,B,C lần lượt thàng ba điểm B’ A’,B’,C’.Ta có:điểm B nằm giữa hai điểm A’ A,C AB+BC=AC A’B’+B’C’=A’C’ Điểm B’ nằm giữa hai điểm A’,C’ M B ? A    B’  M’ Cmr: Nếu M là trung điểm của AB thì .... A’  M’=F(M) là trung điểm của A’B’? Ta có:M là trung điểm của AB M nằm giữa A,B và AM=MB M’ nằm giữa A’,B’ và A’M’=M’B’ M’ là trung điểm của A’B’ Chú ý: (sgk) Câu hỏi TN1Cho hình chữ nhật ABCD (như hình vẽ)Khẳng định nào sau đây sai ,với F làphép dời hình biến tam giác AEIthành tam giác FCH bằng cách thụchiện liên tiếp các phép biến hình ? A). ÑHK vaø AE Tuuur B). TAE vaø HK uuu r Ñ C). ÑHK vaø ( I,-1800 ) Q D). ÑI vaø MN Ñ

Tài liệu được xem nhiều: