Bài giảng Lý thuyết xác suất và thống kê toán: Bài 3 - ThS. Hoàng Thị Thanh Tâm
Số trang: 46
Loại file: pdf
Dung lượng: 723.11 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 5 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Mời các bạn cùng tham khảo "Bài giảng Lý thuyết xác suất và thống kê toán - Bài 3: Biến ngẫu nhiên rời rạc" để nắm chi tiết các nội dung khái niệm và phân loại biến ngẫu nhiên; bảng phân phối xác suất của biến ngẫu nhiên rời rạc; các tham số đặc trưng: kỳ vọng, phương sai, độ lệch chuẩn; biến ngẫu nhiên phân phối không – một; biến ngẫu nhiên phân phối nhị thức; khái niệm và các tham số của biến ngẫu nhiên hai chiều rời rạc.
Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 3 - ThS. Hoàng Thị Thanh Tâm BÀI 3 BIẾN NGẪU NHIÊN RỜI RẠC ThS. Hoàng Thị Thanh Tâm ThS. Mai Cẩm Tú Trường Đại học Kinh tế Quốc dânv1.0014109216 1 TÌNH HUỐNG KHỞI ĐỘNG Lựa chọn vị trí làm việc Một người có thể lựa chọn giữa hai vị trí làm việc. Vị trí thứ nhất là tại một văn phòng và nhận một mức lương tháng cố định là 6 triệu đồng. Vị trí thứ hai là tại một đơn vị kinh doanh và nhận lương tháng theo số hợp đồng ký được. Mỗi hợp đồng ký được sẽ được nhận 5 triệu đồng. Biết rằng, số hợp đồng ký được trong tháng có thể là 0, 1, 2 hoặc 3 hợp đồng với khả năng xảy ra tương ứng là 10%, 30%, 40% và 20%. Làm thế nào để có thể so sánh, đánh giá về mức lương trong hai vị trí trên để từ đó đưa ra lựa chọn?v1.0014109216 2 MỤC TIÊU • Hiểu khái niệm biến ngẫu nhiên và phân biệt được hai loại biến ngẫu nhiên. • Lập được bảng phân phối xác suất của biến ngẫu nhiên rời rạc. • Tính các tham số: kỳ vọng toán, phương sai, độ lệch chuẩn và áp dụng trong phân tích kinh tế. • Biết sử dụng quy luật Không – Một và quy luật Nhị thức để tính xác suất và các tham số đặc trưng. • Hiểu khái niệm biến ngẫu nhiên 2 chiều rời rạc và tính được một số tham số đặc trưng.v1.0014109216 3 HƯỚNG DẪN HỌC • Học đúng lịch trình của môn học theo tuần, làm các bài tập của buổi học trước. • Đọc tài liệu: Giáo trình Lý thuyết xác suất và thống kê toán của NXB Đại học KTQD. • Theo dõi chi tiết các ví dụ, tự tính các kết quả để kiểm tra. • Sinh viên làm việc theo nhóm và trao đổi với giảng viên. • Tham khảo các thông tin từ trang Web của môn học.v1.0014109216 4 NỘI DUNG Khái niệm và phân loại biến ngẫu nhiên Bảng phân phối xác suất của biến ngẫu nhiên rời rạc Các tham số đặc trưng: kỳ vọng, phương sai, độ lệch chuẩn Biến ngẫu nhiên phân phối Không – một Biến ngẫu nhiên phân phối Nhị thức Khái niệm và các tham số của biến ngẫu nhiên hai chiều rời rạcv1.0014109216 5 1. KHÁI NIỆM BIẾN NGẪU NHIÊN 1.1. Khái niệm 1.2. Phân loại biến ngẫu nhiên 1.3. Biến ngẫu nhiên và biến cốv1.0014109216 6 1.1. KHÁI NIỆM • Định nghĩa: Biến ngẫu nhiên là một biến số mà trong kết quả của phép thử nó sẽ nhận một và chỉ một trong các giá trị có thể có của nó tùy thuộc vào sự tác động của các nhân tố ngẫu nhiên. Ký hiệu biến ngẫu nhiên: X, Y, Z... hoặc có thể đặt tên theo ý nghĩa của biến. • Ví dụ 1: Đặt Y là số chấm xuất hiện khi gieo con xúc sắc 1 lần thì: Y là biến số, có thể nhận các giá trị là 1, 2, 3, 4, 5, 6. Sau khi gieo con xúc sắc thì Y nhận đúng 1 trong 6 giá trị trên. Vậy Y là 1 biến ngẫu nhiên, có thể viết là Y = {1; 2; 3; 4; 5; 6}. • Ví dụ 2: Đặt T là thời gian hành khách phải chờ xe buýt tại 1 bến, biết rằng cứ 15 phút lại có một chuyến xe. T là biến số, có thể nhận giá trị bất kỳ thuộc nửa đoạn [0;15) phút. Với mỗi hành khách đến bến thì T nhận đúng một giá trị trong khoảng trên. Vậy: T là biến ngẫu nhiên, có thể viết là T [0;15).v1.0014109216 7 1.2. PHÂN LOẠI BIẾN NGẪU NHIÊN • Biến ngẫu nhiên rời rạc: là biến ngẫu nhiên mà giá trị có thể có của nó lập thành một tập hợp hữu hạn hoặc đếm được. Nói cách khác, ta có thể liệt kê tất cả các giá trị của biến ngẫu nhiên đó. Biến ngẫu nhiên trong Ví dụ 1 thuộc loại rời rạc. Nếu biến rời rạc X có n giá trị có thể có là x1, x2,…, xn, khi đó ta viết: X = {x1, x2,…, xn} • Biến ngẫu nhiên liên tục: là biến ngẫu nhiên mà tập các giá trị có thể có của nó lấp đầy một khoảng trên trục số. Biến ngẫu nhiên trong ví dụ 2 thuộc loại liên tục.v1.0014109216 8 1.3. BIẾN NGẪU NHIÊN VÀ BIẾN CỐ • Với X = {x1, x2,…, xn} thì: Việc (X = xi) với i = 1,2,…, n là các biến cố ngẫu nhiên. Các quan hệ của X với các con số đều tạo thành biến cố. • Ví dụ: Biến ngẫu nhiên X là số chấm xuất hiện khi ...
Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 3 - ThS. Hoàng Thị Thanh Tâm BÀI 3 BIẾN NGẪU NHIÊN RỜI RẠC ThS. Hoàng Thị Thanh Tâm ThS. Mai Cẩm Tú Trường Đại học Kinh tế Quốc dânv1.0014109216 1 TÌNH HUỐNG KHỞI ĐỘNG Lựa chọn vị trí làm việc Một người có thể lựa chọn giữa hai vị trí làm việc. Vị trí thứ nhất là tại một văn phòng và nhận một mức lương tháng cố định là 6 triệu đồng. Vị trí thứ hai là tại một đơn vị kinh doanh và nhận lương tháng theo số hợp đồng ký được. Mỗi hợp đồng ký được sẽ được nhận 5 triệu đồng. Biết rằng, số hợp đồng ký được trong tháng có thể là 0, 1, 2 hoặc 3 hợp đồng với khả năng xảy ra tương ứng là 10%, 30%, 40% và 20%. Làm thế nào để có thể so sánh, đánh giá về mức lương trong hai vị trí trên để từ đó đưa ra lựa chọn?v1.0014109216 2 MỤC TIÊU • Hiểu khái niệm biến ngẫu nhiên và phân biệt được hai loại biến ngẫu nhiên. • Lập được bảng phân phối xác suất của biến ngẫu nhiên rời rạc. • Tính các tham số: kỳ vọng toán, phương sai, độ lệch chuẩn và áp dụng trong phân tích kinh tế. • Biết sử dụng quy luật Không – Một và quy luật Nhị thức để tính xác suất và các tham số đặc trưng. • Hiểu khái niệm biến ngẫu nhiên 2 chiều rời rạc và tính được một số tham số đặc trưng.v1.0014109216 3 HƯỚNG DẪN HỌC • Học đúng lịch trình của môn học theo tuần, làm các bài tập của buổi học trước. • Đọc tài liệu: Giáo trình Lý thuyết xác suất và thống kê toán của NXB Đại học KTQD. • Theo dõi chi tiết các ví dụ, tự tính các kết quả để kiểm tra. • Sinh viên làm việc theo nhóm và trao đổi với giảng viên. • Tham khảo các thông tin từ trang Web của môn học.v1.0014109216 4 NỘI DUNG Khái niệm và phân loại biến ngẫu nhiên Bảng phân phối xác suất của biến ngẫu nhiên rời rạc Các tham số đặc trưng: kỳ vọng, phương sai, độ lệch chuẩn Biến ngẫu nhiên phân phối Không – một Biến ngẫu nhiên phân phối Nhị thức Khái niệm và các tham số của biến ngẫu nhiên hai chiều rời rạcv1.0014109216 5 1. KHÁI NIỆM BIẾN NGẪU NHIÊN 1.1. Khái niệm 1.2. Phân loại biến ngẫu nhiên 1.3. Biến ngẫu nhiên và biến cốv1.0014109216 6 1.1. KHÁI NIỆM • Định nghĩa: Biến ngẫu nhiên là một biến số mà trong kết quả của phép thử nó sẽ nhận một và chỉ một trong các giá trị có thể có của nó tùy thuộc vào sự tác động của các nhân tố ngẫu nhiên. Ký hiệu biến ngẫu nhiên: X, Y, Z... hoặc có thể đặt tên theo ý nghĩa của biến. • Ví dụ 1: Đặt Y là số chấm xuất hiện khi gieo con xúc sắc 1 lần thì: Y là biến số, có thể nhận các giá trị là 1, 2, 3, 4, 5, 6. Sau khi gieo con xúc sắc thì Y nhận đúng 1 trong 6 giá trị trên. Vậy Y là 1 biến ngẫu nhiên, có thể viết là Y = {1; 2; 3; 4; 5; 6}. • Ví dụ 2: Đặt T là thời gian hành khách phải chờ xe buýt tại 1 bến, biết rằng cứ 15 phút lại có một chuyến xe. T là biến số, có thể nhận giá trị bất kỳ thuộc nửa đoạn [0;15) phút. Với mỗi hành khách đến bến thì T nhận đúng một giá trị trong khoảng trên. Vậy: T là biến ngẫu nhiên, có thể viết là T [0;15).v1.0014109216 7 1.2. PHÂN LOẠI BIẾN NGẪU NHIÊN • Biến ngẫu nhiên rời rạc: là biến ngẫu nhiên mà giá trị có thể có của nó lập thành một tập hợp hữu hạn hoặc đếm được. Nói cách khác, ta có thể liệt kê tất cả các giá trị của biến ngẫu nhiên đó. Biến ngẫu nhiên trong Ví dụ 1 thuộc loại rời rạc. Nếu biến rời rạc X có n giá trị có thể có là x1, x2,…, xn, khi đó ta viết: X = {x1, x2,…, xn} • Biến ngẫu nhiên liên tục: là biến ngẫu nhiên mà tập các giá trị có thể có của nó lấp đầy một khoảng trên trục số. Biến ngẫu nhiên trong ví dụ 2 thuộc loại liên tục.v1.0014109216 8 1.3. BIẾN NGẪU NHIÊN VÀ BIẾN CỐ • Với X = {x1, x2,…, xn} thì: Việc (X = xi) với i = 1,2,…, n là các biến cố ngẫu nhiên. Các quan hệ của X với các con số đều tạo thành biến cố. • Ví dụ: Biến ngẫu nhiên X là số chấm xuất hiện khi ...
Tìm kiếm theo từ khóa liên quan:
Lý thuyết xác suất và thống kê toán Lý thuyết xác suất Thống kê toán Biến ngẫu nhiên rời rạc Biến ngẫu nhiên phân phối nhị thứcTài liệu liên quan:
-
Bài giảng Xác suất và thống kê trong y dược - Chương 1: Khái niệm cơ bản của lý thuyết xác suất
69 trang 187 0 0 -
Bài tập Xác suất thống kê (Chương 2)
23 trang 100 0 0 -
Giáo trình Lý thuyết xác suất và thống kê toán học - Phần 1
91 trang 88 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 83 0 0 -
Đặc trưng thống kê và hồi quy với dữ liệu khoảng
5 trang 76 0 0 -
Giáo trình Phương pháp thống kê trong khí hậu: Phần 1
98 trang 70 0 0 -
Bài giảng Lý thuyết xác suất và thống kê toán - Bài 5: Cơ sở lý thuyết mẫu
18 trang 60 0 0 -
Giáo trình Thống kê toán - Đại học Sư phạm Đà Nẵng
137 trang 55 0 0 -
Giáo trình Xác suất thống kê: Phần 1 - PGS.TS Nguyễn Thị Dung
104 trang 55 0 0 -
Thảo luận nhóm: Lý thuyết xác suất và thống kê toán
11 trang 51 0 0