Danh mục

Bài giảng môn học xác suất và thông kê - Nguyễn Văn Thìn

Số trang: 159      Loại file: pdf      Dung lượng: 1.94 MB      Lượt xem: 22      Lượt tải: 0    
Thư viện của tui

Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu tham khảo dành cho giáo viên, sinh viên cao đẳng, đại học môn xác suất thống kê. Trong tài liệu này các bạn sẽ được tiếp xúc với các công thức cơ bản của xác suất thống kê để giúp các bạn có thể làm quen với các bài học về xác suất trong chương trình...
Nội dung trích xuất từ tài liệu:
Bài giảng môn học xác suất và thông kê - Nguyễn Văn ThìnT p h p - Gi i tích t hp Bài Gi ng Môn h c Xác Su t và Th ng Kê Nguy n Văn Thìn Khoa Toán - Tin H c Đ i H c Khoa H c Khoa H c T Nhiên Tp.HCM Ngày 4 tháng 9 năm 2011T p h p - Gi i tích t hp N i dung T p h p - Gi i tích t h p Tph p Gi i tích t h pT p h p - Gi i tích t hp Khái ni m v t p h p • Khái ni m t p h p là m t khái ni m không có đ nh nghĩa, tương t như khái ni m đi m, đư ng th ng trong hình h c. • T p h p có th hi u t ng quát là m t s t u t p c a m t s h u h n hay vô h n các đ i tư ng nào đó. Các đ i tư ng này đư c g i là các ph n t c a t p h p. • Ta thư ng dùng các ch cái in hoa A, B , C , . . . đ kí hi u t p h p. N u a là ph n t thu c t p A ta kí hi u a ∈ A. Ngư c l i, a không thu c A ta kí hi u a ∈ A / • T p h p không có ph n t nào g i là t p r ng. Kí hi u ∅T p h p - Gi i tích t hp Bi u di n t p h p Có hai cách xác đ nh m t t p h p: • Li t kê các ph n t c a nó. Ví d T p h p các s t nhiên nh hơn 5 là A = {0, 1, 2, 3, 4} T p h p các s t nhiên ch n t 0 đ n 100 là B = {0, 2, 4, . . . , 98, 100}T p h p - Gi i tích t hp Bi u di n t p h p • Ch ra tính ch t đ c trưng c a các ph n t c a nó. Không ph i m i t p h p đ u có th li t kê rõ ràng t ng ph n t . Tuy nhiên ta có th dùng tính ch t đ c trưng nào đó đ mô t nó, t đó có th xác đ nh đư c m t ph n t có thu c t p h p này hay không. Ví d T p h p các s th c l n hơn 0 và bé hơn 1 là C = {x |x ∈ R và 0 ≤ x ≤ 1}T p h p - Gi i tích t hp Quan h gi a các t p h p • T p h p con Cho 2 t p h p A và B . N u m i ph n t c a t p h p A đ u thu c t p h p B , thì ta nói t p h p A là con t p h p B và kí hi u A ⊂ B ho c B ⊃ A. Ta vi t A ⊂ B ⇔ (x ∈ A ⇒ x ∈ B ) • T p h p b ng nhau Cho 2 t p h p A và B . N u m i ph n t c a A đ u thu c B và ngư c l i, m i ph n t c a B đ u thu c A thì ta nói hai t p h p A và B b ng nhau và kí hi u A = B . Ta vi t A = B ⇔ (A ⊂ B và B ⊂ A)T p h p - Gi i tích t hp Các phép toán trên các t p h p • Giao c a hai t p h p Giao c a hai t p h p A và B đã cho là t p h p các ph n t đ ng th i thu c c hai t p h p này, kí hi u là A ∩ B Ta vi t x ∈A x ∈A∩B ⇔ x ∈BT p h p - Gi i tích t hp • H p c a hai t p h p H p c a hai t p h p A và B đã cho là t p h p các ph n t thu c ít nh t m t trong hai t p h p này, kí hi u là A ∪ B Ta vi t x ∈A x ∈A∪B ⇔ x ∈BT p h p - Gi i tích t hp Các phép toán trên các t p h p • Hi u c a hai t p h p Hi u hai t p h p A và B đã cho là t p h p các ph n t thu c A mà không thu c B , kí hi u A B Ta vi t A B = {x |x ∈ A và x ∈ B } /T p h p - Gi i tích t hp Các phép toán trên các t p h p Tính ch t • Tính giao hoán A ∪ B = B ∪ A; A ∩ B = B ∩ A • Tính k t h p (A ∪ B ) ∪ C = A ∪ (B ∪ C ) (A ∩ B ) ∩ C = A ∩ (B ∩ C )T p h p - Gi i tích t hp Các phép toán trên các t p h p Tính ch t (tt) • Tính phân ph i A ∩ (B ∪ C ) = (A ∩ B ) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B ) ∩ (A ∪ C ) • Công th c De Morgan A∪B =A∩B A∩B =A∪BT p h p - Gi i tích t hp Quy t c nhân Gi s đ hoàn thành m t công vi c thì ph i th c hi n k giai đo n. Giai đo n th nh t có n1 cách th c hi n, giai đo n th hai có n2 cách th c hi n, . . . , giai đo n th k có nk cách th c hi n. Khi đó ta có n = n1 n2 . . . nk cách hoàn thành công vi c.T p h p - Gi i tích t hp Quy t c nhân Ví d Gi s đi t A đ n C ta b t bu c ph i đi qua B. Có 3 đư ...

Tài liệu được xem nhiều: