Bài giảng môn lý thuyết ôtômát và ngôn ngữ hình thức - Chương 6
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Bài giảng môn lý thuyết ôtômát và ngôn ngữ hình thức - Chương 6 Chương 6 Đơn giản hóa VPPNC và các dạng chuẩn 6.1 Các phương pháp để biến đổi văn phạm 6.2 Hai dạng chuẩn quan trọng 6.3 Giải thuật thành viên cho văn phạm phi ngữ cảnh Trang 189 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Các phương pháp để biến đổi văn phạm Chuỗi trống đóng một vai trò khá đặc biệt trong nhiều định lý và chứng minh, và thường cần có một sự chú ý đặc biệt cho nó. Nếu L ∋ λ thì biểu diễn L = L1 ∪ λ với L1 = L - λ. Nếu G1 = (V1, T, S1, P1) là văn phạm biểu diễn cho L1 thì G = (V1 ∪ {S}, T, S, P1 ∪ {S → S1 | λ}) là văn phạm biểu diễn cho L. Trong chương này, chúng ta chỉ xem xét các NNPNC không chứa λ. Tuy nhiên những kết luận cho ngôn ngữ không chứa λ vẫn có thể áp dụng cho ngôn ngữ có chứa λ. Trang 190 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Một vài qui tắc thay thế hiệu quả Định lý 6.1 Cho G = (V, T, S, P) là một VPPNC. Giả sử P có chứa luật sinh A → x1Bx2 trong đó A, B là các biến khác nhau và B → y1 | y2 | ... | yn là tập tất cả các luật sinh trong P mà có B ở vế trái. Cho G1= (V, T, S, P1) là VP được xây dựng bằng cách xóa đi A → x1Bx2 từ P, và thêm vào nó A → x1y1x2 | x1y2x2| ... | x1ynx2 Thì L(G) = L(G1) Trang 191 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Ví dụ Xét văn phạm G = ({A, B}, {a, b}, A, P) với các luật sinh A → a | aA | bBc, B → abA | b. Sau khi thay thế biến B ta nhận được VP tương đương như sau A → a | aA | babAc | bbc, B → abA | b Chuỗi abbc có các dẫn xuất trong G và G1 lần lượt như sau: A ⇒ aA ⇒ abBc ⇒ abbc A ⇒ aA ⇒ abbc Chú ý rằng, biến B và các luật sinh của nó vẫn còn ở trong VP mặc dù chúng không còn đóng vai trò gì trong bất kỳ dẫn xuất nào. Sau này chúng ta sẽ thấy rằng những luật sinh không cần thiết như vậy có thể bị loại bỏ ra khỏi văn phạm. Trang 192 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Loại bỏ đệ qui trái Định lý 6.2 (Loại bỏ đệ qui trái) Cho G = (V, T, S, P) là một VPPNC. Chia tập các luật sinh mà vế trái của chúng là một biến đã cho nào đó (chẳng hạn là A), thành hai tập con riêng biệt A → Ax1 | Ax2 | ... | Axn (6.2) A → y1 | y2 | ... | ym (6.3) với xi, yi ∈ (V ∪ T)*, và A không là prefix của bất kỳ yi nào. Xét G1 = (V ∪ {Z}, T, S, P1), trong đó Z ∉ V và P1 nhận được bằng cách thay mọi luật sinh của P có dạng (6.2 ) và (6.3) bởi A → yi | yiZ, i = 1, 2, . . . , m, Z → xi | xiZ, i = 1, 2, . . . , n, Thì L(G) = L(G1). Trang 193 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Loại bỏ đệ qui trái (tt) Chứng minh Các dạng câu mà A sinh ra trong văn phạm G có dạng: * A ⇒ A(x1 + x2 + ... + xn)* ⇒ yi(x1 + x2 + ... + xn)* Các dạng câu này cũng có thể được sinh ra trong G1 bằng cách chú ý Z có thể sinh ra các dạng câu có dạng * Z ⇒ (x1 + x2 + ... + xn)(x1 + x2 + ... + xn)* mà A → yi | yiZ nên * A ⇒ yi(x1 + x2 + ... + xn)* Vì vậy L(G) = L(G1). Ghi chú Các luật sinh đệ qui-trái chỉ là một trường hợp đặc biệt của đệ qui-trái trong văn phạm như được phát biểu sau. Một văn phạm được gọi là đệ qui-trái nếu có một biến A nào đó * mà đối với nó A ⇒ Ax là có thể. Trang 194 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Ví dụ Sử dụng Định lý 6.2 để loại bỏ các luật sinh đệ qui-trái khỏi VP A → Aa | aBc | λ B → Bb | ba Áp dụng định lý cho biến A ta được tập luật sinh mới như sau: A → aBc | λ | aBcZ | Z B → Bb | ba Z → a | aZ Áp dụng định lý một lần nữa lần này cho biến B ta được tập luật sinh kết quả cuối cùng như sau: A → aBc | aBcZ | Z | λ B → ba | baY Z → a | aZ Y → b | bY Nhận xét Việc loại bỏ các luật sinh đệ qui-trái đưa ra các biến mới. VP kết quả có thể là đơn giản hơn đáng kể so với VP gốc nhưng một cách tổng quát nó sẽ có nhiều biến và luật sinh hơn. Trang 195 Lý thuyết Ôtômát & NNHT - Khoa Công Nghệ Thông Tin Luật sinh vô dụng Đị ...
Tìm kiếm theo từ khóa liên quan:
mạch điện ứng dụng đề cương vi xử lí vi mạch điện tử lý thuyết ôtômát ngôn ngữ hình thức kỹ thuật điện tử lý thuyết tính toán ngôn ngữ phi ngữ cảnhGợi ý tài liệu liên quan:
-
Chuyên đề: Nghiên cứu Ngôn ngữ hình thức, Văn phạm phi ngữ cảnh và Automata đẩy xuống
84 trang 370 0 0 -
Giáo trình Kỹ thuật điện tử (Nghề: Điện công nghiệp - Cao đẳng) - Trường Cao đẳng Cơ giới (2023)
239 trang 243 0 0 -
ĐỒ ÁN TỐT NGHIỆP: THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO NHÀ MÁY SẢN XUẤT GẠCH MEN SHIJAR
63 trang 233 0 0 -
Giáo trình Toán rời rạc: Phần 1 - Đỗ Đức Giáo
238 trang 218 0 0 -
102 trang 196 0 0
-
94 trang 170 0 0
-
ĐỒ ÁN: THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO NHÀ MÁY CƠ KHÍ TRUNG QUY MÔ SỐ 2
91 trang 163 0 0 -
Hệ thống sưởi - thông gió - điều hòa không khí - Thực hành kỹ thuật điện - điện tử: Phần 1
109 trang 158 0 0 -
83 trang 157 0 0
-
Luận văn: THIẾT KẾ CUNG CẤP ĐIỆN KHU DÂN CƯ
57 trang 153 1 0 -
Đề kiểm tra giữa học kỳ II năm 2013 - 2014 môn Cấu trúc máy tính
6 trang 145 0 0 -
34 trang 131 0 0
-
74 trang 122 0 0
-
Giáo trình Vi mạch tương tự: Phần 1 - CĐ Giao thông Vận tải
70 trang 122 0 0 -
104 trang 117 2 0
-
Luận văn Điều khiển máy công nghiệp bằng thiết bị lập trình
98 trang 114 0 0 -
Giáo trình Kỹ thuật vi điều khiển
121 trang 113 0 0 -
67 trang 105 0 0
-
Đồ án: Vẽ và thiết kế mạch in bằng Orcad
32 trang 103 0 0 -
Đồ án môn học: Thiết kế mạch chuyển nhị phân 4 Bit sang mã Gray và dư 3 sử dụng công tắc điều khiển
29 trang 94 0 0