Bài giảng Thống kê y học - Bài 6: Thống kê, biến số và phân phối
Số trang: 21
Loại file: doc
Dung lượng: 206.50 KB
Lượt xem: 16
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Thống kê y học - Bài 6: Thống kê, biến số và phân phối giúp người học có thể trình bày định nghĩa của thống kê, số liệu, thông tin và biến số; phân biệt được các loại biến số 0 định lượng và định tính trong có có biến số nhị giá, danh định hay thứ tự;... Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Thống kê y học - Bài 6: Thống kê, biến số và phân phối THỐNG KÊ, BIẾN SỐ VÀ PHÂN PHỐI Mục tiêu Sau khi nghiên cứu chủ đề, học viên có khả năng: Trình bày định nghĩa của thống kê, số liệu, thông tin và biến số Phân biệt được các loại biến số: định lượng và định tính trong có có biến số nhị giá, danh định hay thứ tự. Xây dựng được bảng phân phối tần suất cho số liệu định tính và định lượng Lựa chọn được các loại biểu đồ hay đồ thị thích hợp để trình bày số liệu định tính và định lượng Tính được các số thống kê tóm tắt như trung bình, trung vị, yếu vị, độ lệch chuẩn, phương sai. 1. Một số định nghĩa Thống kê là phương pháp khoa học dùng đề thu thập, tóm tắt, trình bày và phân tích số liệu. Phương pháp thống kê được sử dụng trong nghiên cứu nhằm để so sánh một nhóm đối tượng chứ không nhằm nghiên cứu từng cá nhân đơn lẻ. Số liệu: Kết quả có được do việc quan sát hay thu thập đặc tính hay đại lượng ở các đối tượng khác nhau hay ở thời gian khác nhau. Thí dụ: Quan sát giới tính của các học viên trong lớp, số liệu ghi nhận được là: Nam, nam, nữ, nữ, nữ, nam, nữ, v.v Thí dụ: Một nhà nghiên cứu đo nồng độ hemoglobin của 70 thai phụ có kết quả như sau: 10.2 13.7 10.4 14.9 11.5 12.0 11.0 13.3 12.9 12.1 9.4 13.2 10.8 11.7 10.6 10.5 13.7 11.8 14.1 10.3 13.6 12.1 12.9 11.4 12.7 10.6 11.4 11.9 9.3 13.5 14.6 11.2 11.7 10.9 10.4 12.0 12.9 11.1 8.8 10.2 11.6 12.5 13.4 12.1 10.9 11.3 14.7 10.8 13.3 11.9 11.4 12.5 13.0 11.6 13.1 9.7 11.2 15.1 10.7 12.9 13.4 12.3 11.0 14.6 11.1 13.5 10.9 13.1 11.8 12.2 và những con số này được gọi là số liệu. Cần lưu ý số liệu phải liên kết với một đặc tính hay đại lượng nhất định. Ghi nhận giới tính ở người này, tuổi của người khác, quần áo của một người khác nữa thì kết quả này được không phải là số liệu. Sử dụng phương pháp thống kê chúng ta có thể tóm tắt số liệu trên sử dụng nồng độ hemoglobin trung bình=11,98 và độ lệch chuẩn bằng 1.42. Số liệu được tóm tắt, trình bày hay phân tích bằng phương pháp thống kê sẽ trở thành thông tin. 2. Biến số và các loại biến số Biến số là những đại lượng hay những đặc tính có thể thay đổi từ người này sang người khác hay từ thời điểm này sang thời điểm khác. Như vậy biến số có thể thể hiện đại lượng hay đặc tính. Nếu nó thể hiện một đại lượng nó được gọi là biến số định lượng. Nếu nó nhằm thể hiện một đặc tính no được gọi là biến số định tính. Biến số định tính Biến số định tính còn được chia làm 3 loại: biến số thứ tự, biến số danh định và biến số nhị giá. Biến số thứ tự là biến số định tính với các giá trị có thể sắp xếp thứ tự được. Thí dụ: tình trạng kinh tế xã hội (giàu, khá, trung bình, nghèo, rất nghèo) là biến số thứ tự bởi vì người giàu có điều kiện kinh tế tốt hơn người khá, người khá hơn người trung bình, trung bình hơn nghèo, v.v Những thí dụ khác là học lực của học sinh (giỏi, khá, trung bình, kém), tiên lượng (tốt, khá, xấu, tử vong). Theo phân loại tăng huyết áp của Tổ chức Y tế Thế giới được trình bày như sau, theo phân loại huyết áp với các giá trị huyết áp bình thường, tăng huyết áp độ 1, tăng huyết áp độ 2, tăng huyết áp độ 3 là biến số thứ tự Huyết áp bình thường: HA tâm thu ≤ 139 và HA tâm trương ≤ 89 Tăng huyết áp độ 1: HA tâm thu ≤ 179 hay HA tâm trương ≤ 104 Tăng huyết áp độ 2: HA tâm thu ≥ 180 hay HA tâm trương >114 Tăng huyết áp độ 3: HA tâm thu ≥ 180 và HA tâm trương ≥ 115 mmHg Biến số danh định là biến số định tính mà giá trị của nó không thể biểu thị bằng số mà phải biểu diễn bằng một tên gọi (danh: tên) và các giá trị này không thể sắp đặt theo một trật tự từ thấp đến cao. Thí dụ: Biến số dân tộc với các giá trị: Kinh, Khmer, Hoa, Chăm,… là biến số định tính vì chúng ta không thể sắp xếp các giá trị này từ theo một trật tự từ thấp đến cao hay ngược lại. Một số thí dụ khác của biến số danh định là tình trạng hôn nhân (có 4 giá trị: độc thân, có gia đình, li dị, góa) nhóm máu (A, B, AB và O). Đôi khi biến số danh định chỉ có 2 giá trị: thí dụ như sống hay chết; có hút thuốc lá hay không hút thuốc lá; có suy dinh dưỡng hay không suy dinh dưỡng; nam hay nữ. Những biến số thuộc loại này được gọi là biến số nhị giá (binary variable) Mã hoá Trong phân tích thống kê, để tiện việc nhập số liệu hay lí giải kết quả, người ta có thể ánh xạ (mapping) các giá trị của biến định tính vào các con số. Việc này được gọi là mã hóa và cần hiểu rằng việc mã hóa này hoàn toàn có tính chất áp đặt và các con số được dùng trong mã hóa không phản ánh bản chất của biến số danh định. Giới tính là biến số danh định và có hai giá trị là nam và nữ. Chúng ta có thể mã hóa giới tính và ...
Nội dung trích xuất từ tài liệu:
Bài giảng Thống kê y học - Bài 6: Thống kê, biến số và phân phối THỐNG KÊ, BIẾN SỐ VÀ PHÂN PHỐI Mục tiêu Sau khi nghiên cứu chủ đề, học viên có khả năng: Trình bày định nghĩa của thống kê, số liệu, thông tin và biến số Phân biệt được các loại biến số: định lượng và định tính trong có có biến số nhị giá, danh định hay thứ tự. Xây dựng được bảng phân phối tần suất cho số liệu định tính và định lượng Lựa chọn được các loại biểu đồ hay đồ thị thích hợp để trình bày số liệu định tính và định lượng Tính được các số thống kê tóm tắt như trung bình, trung vị, yếu vị, độ lệch chuẩn, phương sai. 1. Một số định nghĩa Thống kê là phương pháp khoa học dùng đề thu thập, tóm tắt, trình bày và phân tích số liệu. Phương pháp thống kê được sử dụng trong nghiên cứu nhằm để so sánh một nhóm đối tượng chứ không nhằm nghiên cứu từng cá nhân đơn lẻ. Số liệu: Kết quả có được do việc quan sát hay thu thập đặc tính hay đại lượng ở các đối tượng khác nhau hay ở thời gian khác nhau. Thí dụ: Quan sát giới tính của các học viên trong lớp, số liệu ghi nhận được là: Nam, nam, nữ, nữ, nữ, nam, nữ, v.v Thí dụ: Một nhà nghiên cứu đo nồng độ hemoglobin của 70 thai phụ có kết quả như sau: 10.2 13.7 10.4 14.9 11.5 12.0 11.0 13.3 12.9 12.1 9.4 13.2 10.8 11.7 10.6 10.5 13.7 11.8 14.1 10.3 13.6 12.1 12.9 11.4 12.7 10.6 11.4 11.9 9.3 13.5 14.6 11.2 11.7 10.9 10.4 12.0 12.9 11.1 8.8 10.2 11.6 12.5 13.4 12.1 10.9 11.3 14.7 10.8 13.3 11.9 11.4 12.5 13.0 11.6 13.1 9.7 11.2 15.1 10.7 12.9 13.4 12.3 11.0 14.6 11.1 13.5 10.9 13.1 11.8 12.2 và những con số này được gọi là số liệu. Cần lưu ý số liệu phải liên kết với một đặc tính hay đại lượng nhất định. Ghi nhận giới tính ở người này, tuổi của người khác, quần áo của một người khác nữa thì kết quả này được không phải là số liệu. Sử dụng phương pháp thống kê chúng ta có thể tóm tắt số liệu trên sử dụng nồng độ hemoglobin trung bình=11,98 và độ lệch chuẩn bằng 1.42. Số liệu được tóm tắt, trình bày hay phân tích bằng phương pháp thống kê sẽ trở thành thông tin. 2. Biến số và các loại biến số Biến số là những đại lượng hay những đặc tính có thể thay đổi từ người này sang người khác hay từ thời điểm này sang thời điểm khác. Như vậy biến số có thể thể hiện đại lượng hay đặc tính. Nếu nó thể hiện một đại lượng nó được gọi là biến số định lượng. Nếu nó nhằm thể hiện một đặc tính no được gọi là biến số định tính. Biến số định tính Biến số định tính còn được chia làm 3 loại: biến số thứ tự, biến số danh định và biến số nhị giá. Biến số thứ tự là biến số định tính với các giá trị có thể sắp xếp thứ tự được. Thí dụ: tình trạng kinh tế xã hội (giàu, khá, trung bình, nghèo, rất nghèo) là biến số thứ tự bởi vì người giàu có điều kiện kinh tế tốt hơn người khá, người khá hơn người trung bình, trung bình hơn nghèo, v.v Những thí dụ khác là học lực của học sinh (giỏi, khá, trung bình, kém), tiên lượng (tốt, khá, xấu, tử vong). Theo phân loại tăng huyết áp của Tổ chức Y tế Thế giới được trình bày như sau, theo phân loại huyết áp với các giá trị huyết áp bình thường, tăng huyết áp độ 1, tăng huyết áp độ 2, tăng huyết áp độ 3 là biến số thứ tự Huyết áp bình thường: HA tâm thu ≤ 139 và HA tâm trương ≤ 89 Tăng huyết áp độ 1: HA tâm thu ≤ 179 hay HA tâm trương ≤ 104 Tăng huyết áp độ 2: HA tâm thu ≥ 180 hay HA tâm trương >114 Tăng huyết áp độ 3: HA tâm thu ≥ 180 và HA tâm trương ≥ 115 mmHg Biến số danh định là biến số định tính mà giá trị của nó không thể biểu thị bằng số mà phải biểu diễn bằng một tên gọi (danh: tên) và các giá trị này không thể sắp đặt theo một trật tự từ thấp đến cao. Thí dụ: Biến số dân tộc với các giá trị: Kinh, Khmer, Hoa, Chăm,… là biến số định tính vì chúng ta không thể sắp xếp các giá trị này từ theo một trật tự từ thấp đến cao hay ngược lại. Một số thí dụ khác của biến số danh định là tình trạng hôn nhân (có 4 giá trị: độc thân, có gia đình, li dị, góa) nhóm máu (A, B, AB và O). Đôi khi biến số danh định chỉ có 2 giá trị: thí dụ như sống hay chết; có hút thuốc lá hay không hút thuốc lá; có suy dinh dưỡng hay không suy dinh dưỡng; nam hay nữ. Những biến số thuộc loại này được gọi là biến số nhị giá (binary variable) Mã hoá Trong phân tích thống kê, để tiện việc nhập số liệu hay lí giải kết quả, người ta có thể ánh xạ (mapping) các giá trị của biến định tính vào các con số. Việc này được gọi là mã hóa và cần hiểu rằng việc mã hóa này hoàn toàn có tính chất áp đặt và các con số được dùng trong mã hóa không phản ánh bản chất của biến số danh định. Giới tính là biến số danh định và có hai giá trị là nam và nữ. Chúng ta có thể mã hóa giới tính và ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Thống kê y học Bài giảng Thống kê y học Phân phối xác suất Bảng phân phối tần suất Số liệu định tính Số liệu định lượngGợi ý tài liệu liên quan:
-
Một số bài tập trắc nghiệm xác suất - ThS. Đoàn Vương Nguyên
7 trang 87 0 0 -
Bài giảng Kỹ thuật xử lý và phân tích số liệu định lượng - ThS, Nguyễn Ngọc Anh
10 trang 81 0 0 -
Bài giảng Lý thuyết xác suất và thống kê toán - Bài 5: Cơ sở lý thuyết mẫu
18 trang 59 0 0 -
20 trang 44 0 0
-
Bài giảng Lý thuyết xác suất và thống kê toán - Chương 3: Một số phân phối xác suất thông dụng
48 trang 34 0 0 -
Bài giảng Thống kê y học - Bài 14: So sánh nhiều trung bình - Phân tích phương sai
15 trang 31 0 0 -
XÁC SUẤT THỐNG KÊ CHƯƠNG 2 ĐẠI LƯỢNG NGẪU NHIÊN VÀ PHÂN PHỐI XÁC SUẤT
32 trang 28 0 0 -
Bài giảng Thống kê máy tính và ứng dụng: Bài 3 - Vũ Quốc Hoàng
24 trang 28 0 0 -
Bài giảng Thống kê y học - Bài 13: Ước lượng
8 trang 27 0 0 -
Đề thi kết thúc học phần Xác suất thống kê năm 2018 - Đề số 9 (22/12/2018)
1 trang 25 0 0