Bài giảng Tín hiệu và hệ thống: Chương 3 (Lecture 6) - Trần Quang Việt
Số trang: 7
Loại file: pdf
Dung lượng: 296.21 KB
Lượt xem: 19
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Chương 3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier. Trong bài này tập trung trình bày những nội dung chính sau: Chuỗi Fourier, điều kiện tồn tại chuỗi Fourier, các tính chất của chuỗi Fourier, chuỗi Fourier và hệ thống LTI. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Tín hiệu và hệ thống: Chương 3 (Lecture 6) - Trần Quang Việt Ch-3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier Lecture-6 3.3. Chuỗi Fourier và tính chất 3.4. Chuỗi Fourier và hệ thống LTI Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.3. Chuỗi Fourier và các tính chất 3.3.1. Chuỗi Fourier 3.3.2. Điều kiện tồn tại chuỗi Fourier 3.3.3. Các tính chất của chuỗi Fourier Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 1 3.3.1. Chuỗi Fourier 2π { } Xét tập tín hiệu: e jnω0 t ; n=0, ±1, ±2,.... và T0 = ω0 t1 + T0 t1 +T0 Ta có: (e jnω0t , e jmω0t )= ∫ e jnω0 t e− jmω0t dt = ∫ e j(n −m)ω0t dt t1 t1 1 t1 + T0 1 = e j(n −m)ω0t = e j(n −m)ω0t1 [e j(n −m)ω0T0 − 1] =0 j(n − m)ω0 t1 j(n − m)ω0 t1 + T0 Và: (e 0 , e 0 )= ∫ jnω t jnω t e jnω0 t e − jnω0 t dt = T0 = E n t1 Vậy tập tín hiệu trên là không gian tín hiệu trực giao. Dùng kết quả phần trước ta có biểu diễn chuỗi Fourier cho f(t) trong khoảng t13.3.1. Chuỗi Fourier Ví dụ: tìm chuỗi Fourier biểu diễn cho TH tuần hoàn như hình vẽ 1 1 T1 2T 1 D0 = ∫ T -T1 dt = 1 = T 3 1 T1 1 T1 1 D n = ∫ e − jnω0 t dt = e − jnω0t = (e − jnω0T1 − e jnω0T1 ) T 1 -T − jnω0 T − T1 − j2nπ 1 1 nπ 1 nπ = sin(nω0 T1 ) = sin = sinc nπ nπ 3 3 3 ∞ 1 nπ jnω0 t f(t)= ∑ sinc e n= −∞ 3 3 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.3.1. Chuỗi Fourier Chuỗi Fourier lượng giác: trong trường hợp f(t) là tín hiệu thực ∞ ∞ ∞ f(t)=f * (t) f(t)= ∑ D n e jnω0 t = ∑De * − jnω0 t n = ∑D * −n e jnω0t n= −∞ n= −∞ n= −∞ ∗ * Dn = D −n D = D− n n chuỗi Fourier được viết lại như sau: ∞ ∞ f(t)=D0 + ∑ (D n e jnω0 t + D− n e − jnω0 t ) =D 0 + ∑ (D n e jnω0 t + D*n e− jnω0 t ) n=1 n=1 ∞ f(t)=C0 + ∑ Cn cos(nω0 t+θ n ) n=1 C0 =D0 ; Cn =2|D n |; θ n = ∠D n Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3 3.3.1. Chuỗi Fourier Phổ của tín hiệu tuần hoàn: chuỗi Fourier biểu diễn tín hiệu tuần hoàn thành tổng các thành phần tần số. Phân bố giá trị của các thành phần trên thang tần số gọi là phổ tần số (thường gọi là phổ) tín hiệu. Trong trường hợp tổng quát người ta dùng phổ biên độ và phổ pha. ∞ 1 nπ jnω0 t Xét ví dụ trước: f(t)= ∑ 3 sinc n= −∞ 3 e Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.3.2. Điều kiện tồn tại chuỗi Fourier Các tín hiệu tuần hoàn có năng lượng trong 1 chu kỳ hữu hạn đều có thể biểu diễn bằng chuỗi Fourier (Dn hữu hạn & năng lượng sai số bằng 0). Thực tế f(t) & chuỗi Fourier sẽ không có sự phân biệt đối với các hệ thống vật lý vì chúng đáp ứng trên cơ sở năng lượng Điều kiện Dirichlet: chuỗi Fourier hội tụ về giá trị trung bình tại điểm gián đoạn Điều kiện 1: ∫ |f(t)|dt3.3.2. Điều kiện tồn tại chuỗi Fourier Điều kiện 2: có số cực đại và cực tiểu hữu hạn trong 1 chu kỳ Ex: f(t)=sin(2π /t); 03.3.3. Các tính chất của chuỗi Fourier Tính tuyến tính: f1 ...
Nội dung trích xuất từ tài liệu:
Bài giảng Tín hiệu và hệ thống: Chương 3 (Lecture 6) - Trần Quang Việt Ch-3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier Lecture-6 3.3. Chuỗi Fourier và tính chất 3.4. Chuỗi Fourier và hệ thống LTI Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.3. Chuỗi Fourier và các tính chất 3.3.1. Chuỗi Fourier 3.3.2. Điều kiện tồn tại chuỗi Fourier 3.3.3. Các tính chất của chuỗi Fourier Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 1 3.3.1. Chuỗi Fourier 2π { } Xét tập tín hiệu: e jnω0 t ; n=0, ±1, ±2,.... và T0 = ω0 t1 + T0 t1 +T0 Ta có: (e jnω0t , e jmω0t )= ∫ e jnω0 t e− jmω0t dt = ∫ e j(n −m)ω0t dt t1 t1 1 t1 + T0 1 = e j(n −m)ω0t = e j(n −m)ω0t1 [e j(n −m)ω0T0 − 1] =0 j(n − m)ω0 t1 j(n − m)ω0 t1 + T0 Và: (e 0 , e 0 )= ∫ jnω t jnω t e jnω0 t e − jnω0 t dt = T0 = E n t1 Vậy tập tín hiệu trên là không gian tín hiệu trực giao. Dùng kết quả phần trước ta có biểu diễn chuỗi Fourier cho f(t) trong khoảng t13.3.1. Chuỗi Fourier Ví dụ: tìm chuỗi Fourier biểu diễn cho TH tuần hoàn như hình vẽ 1 1 T1 2T 1 D0 = ∫ T -T1 dt = 1 = T 3 1 T1 1 T1 1 D n = ∫ e − jnω0 t dt = e − jnω0t = (e − jnω0T1 − e jnω0T1 ) T 1 -T − jnω0 T − T1 − j2nπ 1 1 nπ 1 nπ = sin(nω0 T1 ) = sin = sinc nπ nπ 3 3 3 ∞ 1 nπ jnω0 t f(t)= ∑ sinc e n= −∞ 3 3 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.3.1. Chuỗi Fourier Chuỗi Fourier lượng giác: trong trường hợp f(t) là tín hiệu thực ∞ ∞ ∞ f(t)=f * (t) f(t)= ∑ D n e jnω0 t = ∑De * − jnω0 t n = ∑D * −n e jnω0t n= −∞ n= −∞ n= −∞ ∗ * Dn = D −n D = D− n n chuỗi Fourier được viết lại như sau: ∞ ∞ f(t)=D0 + ∑ (D n e jnω0 t + D− n e − jnω0 t ) =D 0 + ∑ (D n e jnω0 t + D*n e− jnω0 t ) n=1 n=1 ∞ f(t)=C0 + ∑ Cn cos(nω0 t+θ n ) n=1 C0 =D0 ; Cn =2|D n |; θ n = ∠D n Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3 3.3.1. Chuỗi Fourier Phổ của tín hiệu tuần hoàn: chuỗi Fourier biểu diễn tín hiệu tuần hoàn thành tổng các thành phần tần số. Phân bố giá trị của các thành phần trên thang tần số gọi là phổ tần số (thường gọi là phổ) tín hiệu. Trong trường hợp tổng quát người ta dùng phổ biên độ và phổ pha. ∞ 1 nπ jnω0 t Xét ví dụ trước: f(t)= ∑ 3 sinc n= −∞ 3 e Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.3.2. Điều kiện tồn tại chuỗi Fourier Các tín hiệu tuần hoàn có năng lượng trong 1 chu kỳ hữu hạn đều có thể biểu diễn bằng chuỗi Fourier (Dn hữu hạn & năng lượng sai số bằng 0). Thực tế f(t) & chuỗi Fourier sẽ không có sự phân biệt đối với các hệ thống vật lý vì chúng đáp ứng trên cơ sở năng lượng Điều kiện Dirichlet: chuỗi Fourier hội tụ về giá trị trung bình tại điểm gián đoạn Điều kiện 1: ∫ |f(t)|dt3.3.2. Điều kiện tồn tại chuỗi Fourier Điều kiện 2: có số cực đại và cực tiểu hữu hạn trong 1 chu kỳ Ex: f(t)=sin(2π /t); 03.3.3. Các tính chất của chuỗi Fourier Tính tuyến tính: f1 ...
Tìm kiếm theo từ khóa liên quan:
Tín hiệu hệ thống Bài giảng Tín hiệu và hệ thống Biểu diễn tín hiệu tuần hoàn Chuỗi Fourier Điều kiện tồn tại chuỗi Fourier Hệ thống LTIGợi ý tài liệu liên quan:
-
Bài giảng Tín hiệu và hệ thống - Hoàng Minh Sơn
57 trang 58 0 0 -
Bài giảng Tín hiệu và hệ thống: Chương 1 - Lê Vũ Hà
28 trang 42 0 0 -
Giáo trình Toán giải tích tập 4 - NXB Giáo dục
614 trang 41 0 0 -
Giáo trình Chuỗi và phương trình vi phân: Phần 1
112 trang 36 0 0 -
Bài giảng Tín hiệu và hệ thống: Chương 2.2 - ThS. Đinh Thị Thái Mai
19 trang 30 0 0 -
Bài giảng Tín hiệu và hệ thống: Chương 4 - Trần Thủy Bình
21 trang 29 0 0 -
Bài giảng Tín hiệu và hệ thống: Chương 3.2 - ThS. Đinh Thị Thái Mai
20 trang 29 0 0 -
Giáo trình Toán (Tập 3) - Giải tích 3: Giáo trình và 500 bài tập có lời giải - NXB Giáo dục
595 trang 27 0 0 -
Bài giảng Tín hiệu và hệ thống: Chương 2 - Huỳnh Thái Hoàng
53 trang 25 0 0 -
Giáo trình Toán giải tích tập 3 - NXB Giáo dục
595 trang 24 0 0