Bài giảng Tối ưu hóa trong thiết kế cơ khí: Chương 7 - ĐH Công nghiệp TP.HCM
Số trang: 37
Loại file: pdf
Dung lượng: 2.15 MB
Lượt xem: 21
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng "Tối ưu hóa trong thiết kế cơ khí - Chương 7: Phương pháp đồ thị để giải bài toán tối ưu hóa có 2 tham biến" cung cấp cho người học các kiến thức: Phương pháp đồ thị, tìm giá trik k đẻ hai đường cong tiếp xúc nhau,... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Tối ưu hóa trong thiết kế cơ khí: Chương 7 - ĐH Công nghiệp TP.HCM Trường Đại học Công nghiệp thành phố Hồ Chí Minh Khoa Công nghệ Cơ khí CHƯƠNG 07: PHƯƠNG PHÁP ĐỒ THỊ ĐỂ GIẢI BÀI TOÁN TỐI ƯU HÓA CÓ 2 THAM BIẾN Thời lượng: 3 tiết 2 Đặt vấn đề Trong rất nhiều bài toán thiết kế, kỹ thuật phức tạp, số lượng các hàm ràng buộc (bất đẳng thức) là rất lớn, tuy nhiên hàm mục tiêu và các ràng buộc chỉ có 2 tham biến. Với những bài toán này, nhiều khi áp dụng phương pháp đồ thị sẽ đem lại hiệu quả tốt, đồng thời đưa ra một lời giải trực quan và dễ hiểu. Hơn nữa, trong 1 số trường hợp khi lời giải cần tìm phải là số nguyên, thì phương pháp đồ thị trong trường hợp này lại giúp tìm ra kết quả dễ dàng mà không cần sử dụng những kỹ thuật phức tạp khác. 3 bước Cơ bản của phương pháp này là: - Vẽ đồ thị các hàm ràng buộc - Xác định miền lời giải hợp lệ (vùng diện tích được giới hạn bởi các đường cong ràng buộc) - Vẽ các đường cong đồng mức của hàm mục tiêu để xác định cực trị ở trong miền hợp lệ Chú ý: Đi theo hướng của Gradient đến điểm cực trị nhưng phải trong khuôn khổ miền hợp lệ 3 Phương pháp đồ thị Cực đại hóa hàm số sau: f x1 , x2 400 x1 600 x2 max x1 x2 x1 x2 Với các ràng buộc: x1 x2 16; 1; 1; x1 0; x2 0 28 14 14 24 Bước 1: Kẻ hệ trục tọa độ x1x2 Nhìn vào các ràng buộc để dự đoán một cách tương đối về khoảng giá trị của các tham biến. Ví dụ ở đây ta có thể lấy [0;25]. Trong nhiều trường hợp khoảng giá trị trên các trục chỉ có thể xác định sau khi vẽ các đồ thị. Bước 2: Vẽ các đường ràng buộc bất đẳng thức Xét ràng buộc đầu tiên, ta bỏ dấu bất đẳng thức ≤ để vẽ đồ thị đường: x1 x2 16 0 4 Bước 3: Phân định miền bất đằng thức: Dựa vào tọa độ của 1 điểm thuận tiện không nằm trên đường cong ràng buộc thuộc 1 trong 2 miền. Từ đó xác định được dấu của 2 miền 2 phía đường cong. Không hợp lệ Hợp lệ 5 Bước 4: Vẽ các đường cong ràng buộc còn lại và xác định miền hợp lệ: Làm tương tự bước 3 cho các đường cong ràng buộc còn lại g 4 x1 0 G x1 x2 g3 1 14 24 F g1 x1 x2 16 E D x1 x2 Miền g2 1 28 14 ABCDE C hợp lệ A g5 x2 0 B J H 6 Bước 5: Vẽ các đường đồng mức của hàm mục tiêu x1 x2 g3 1 Tính Gradient của hàm số để biết 14 24 hướng độ dốc khiến hàm số tăng. Trên hình các mũi tên đều song song với véc tơ , chúng sẽ vuông góc với các E đường đồng mức của hàm f. Ta D g1 x1 x2 16 vẽ hàng loạt đường thẳng song song nhau và vuông góc với véc tơ Gradient vì đường đồng mức x1 x2 g 2 1 của f là các đường thẳng (hàm f C 28 14 bậc 1 với 2 biến). Để hàm f đạt giá trị ngày càng A lớn thì đường đồng mức cần đi theo hướng mũi tên của B Gradient, nhưng cần phải có một 400 2 đường đồng mức xa nhất mà vẫn f x “chạm” vào miền hợp lệ. Trên 600 3 hình ta thấy là điểm D. 7 Bước 6: Tìm tọa độ điểm D là điểm mà ta nhận thấy hàm f đạt cực đại mà vẫn thỏa mãn mi ...
Nội dung trích xuất từ tài liệu:
Bài giảng Tối ưu hóa trong thiết kế cơ khí: Chương 7 - ĐH Công nghiệp TP.HCM Trường Đại học Công nghiệp thành phố Hồ Chí Minh Khoa Công nghệ Cơ khí CHƯƠNG 07: PHƯƠNG PHÁP ĐỒ THỊ ĐỂ GIẢI BÀI TOÁN TỐI ƯU HÓA CÓ 2 THAM BIẾN Thời lượng: 3 tiết 2 Đặt vấn đề Trong rất nhiều bài toán thiết kế, kỹ thuật phức tạp, số lượng các hàm ràng buộc (bất đẳng thức) là rất lớn, tuy nhiên hàm mục tiêu và các ràng buộc chỉ có 2 tham biến. Với những bài toán này, nhiều khi áp dụng phương pháp đồ thị sẽ đem lại hiệu quả tốt, đồng thời đưa ra một lời giải trực quan và dễ hiểu. Hơn nữa, trong 1 số trường hợp khi lời giải cần tìm phải là số nguyên, thì phương pháp đồ thị trong trường hợp này lại giúp tìm ra kết quả dễ dàng mà không cần sử dụng những kỹ thuật phức tạp khác. 3 bước Cơ bản của phương pháp này là: - Vẽ đồ thị các hàm ràng buộc - Xác định miền lời giải hợp lệ (vùng diện tích được giới hạn bởi các đường cong ràng buộc) - Vẽ các đường cong đồng mức của hàm mục tiêu để xác định cực trị ở trong miền hợp lệ Chú ý: Đi theo hướng của Gradient đến điểm cực trị nhưng phải trong khuôn khổ miền hợp lệ 3 Phương pháp đồ thị Cực đại hóa hàm số sau: f x1 , x2 400 x1 600 x2 max x1 x2 x1 x2 Với các ràng buộc: x1 x2 16; 1; 1; x1 0; x2 0 28 14 14 24 Bước 1: Kẻ hệ trục tọa độ x1x2 Nhìn vào các ràng buộc để dự đoán một cách tương đối về khoảng giá trị của các tham biến. Ví dụ ở đây ta có thể lấy [0;25]. Trong nhiều trường hợp khoảng giá trị trên các trục chỉ có thể xác định sau khi vẽ các đồ thị. Bước 2: Vẽ các đường ràng buộc bất đẳng thức Xét ràng buộc đầu tiên, ta bỏ dấu bất đẳng thức ≤ để vẽ đồ thị đường: x1 x2 16 0 4 Bước 3: Phân định miền bất đằng thức: Dựa vào tọa độ của 1 điểm thuận tiện không nằm trên đường cong ràng buộc thuộc 1 trong 2 miền. Từ đó xác định được dấu của 2 miền 2 phía đường cong. Không hợp lệ Hợp lệ 5 Bước 4: Vẽ các đường cong ràng buộc còn lại và xác định miền hợp lệ: Làm tương tự bước 3 cho các đường cong ràng buộc còn lại g 4 x1 0 G x1 x2 g3 1 14 24 F g1 x1 x2 16 E D x1 x2 Miền g2 1 28 14 ABCDE C hợp lệ A g5 x2 0 B J H 6 Bước 5: Vẽ các đường đồng mức của hàm mục tiêu x1 x2 g3 1 Tính Gradient của hàm số để biết 14 24 hướng độ dốc khiến hàm số tăng. Trên hình các mũi tên đều song song với véc tơ , chúng sẽ vuông góc với các E đường đồng mức của hàm f. Ta D g1 x1 x2 16 vẽ hàng loạt đường thẳng song song nhau và vuông góc với véc tơ Gradient vì đường đồng mức x1 x2 g 2 1 của f là các đường thẳng (hàm f C 28 14 bậc 1 với 2 biến). Để hàm f đạt giá trị ngày càng A lớn thì đường đồng mức cần đi theo hướng mũi tên của B Gradient, nhưng cần phải có một 400 2 đường đồng mức xa nhất mà vẫn f x “chạm” vào miền hợp lệ. Trên 600 3 hình ta thấy là điểm D. 7 Bước 6: Tìm tọa độ điểm D là điểm mà ta nhận thấy hàm f đạt cực đại mà vẫn thỏa mãn mi ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Tối ưu hóa trong thiết kế cơ khí Tối ưu hóa trong thiết kế cơ khí Tối ưu hóa Thiết kế cơ khí Phương pháp đồ thị Giải bài toán tối ưu hóaGợi ý tài liệu liên quan:
-
Tóm tắt luận án tiến sỹ Một số vấn đề tối ưu hóa và nâng cao hiệu quả trong xử lý thông tin hình ảnh
28 trang 223 0 0 -
Đồ án Thiết kế cơ khí: Tính toán thiết kế hệ thống thay dao tự động cho máy phay CNC
56 trang 161 0 0 -
Đồ án Cung cấp điện: Thiết kế hệ thống cung cấp điện cho xưởng cơ khí
77 trang 87 0 0 -
BÀI TẬP TỔNG HỢP - QUY HOẠCH TUYẾN TÍNH
3 trang 68 0 0 -
Đồ án thiết kế hệ thống thay dao cho máy CNC
51 trang 53 0 0 -
Bài giảng Quy hoạch tuyến tính: Chương 1 - Nguyễn Hoàng Tuấn
28 trang 51 0 0 -
Một số bài toán điều khiển tối ưu và tối ưu hóa: Phần 1
141 trang 49 0 0 -
Giáo trình Tối ưu hóa - PGS.TS. Nguyễn Hải Thanh
187 trang 40 0 0 -
7 trang 40 0 0
-
Tổng hợp bài tập Tối ưu hoá: Phần 2
152 trang 34 0 0