Bài giảng Xác suất thống kê: Chương 1 Xác suất của một biến cố nhằm trình bày về xác suất cổ điển, xác suất theo thống kê và các nguyên lý xác suất...cùng tìm hiểu sâu hơn qua bài giảng này, chúc các bạn học tốt.
Nội dung trích xuất từ tài liệu:
Bài giảng Xác suất thống kê: Chương 1 - Nguyễn Ngọc Phụng (ĐH Ngân hàng TP.HCM) Xaùc suaát cuûa moät bieán coá 1 Xaùc suaát cuûa moät bieán coá Xaùc suaát coå ñieån Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Nguyeãn Ngoïc Phuïng - Tröôøng Ñaïi Hoïc Ngaân Haøng TPHCM XAÙC SUAÁT THOÁNG KEÂ Xaùc suaát coå ñieån Xaùc suaát cuûa moät bieán coá Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Bieán coá sô caáp Ñònh nghóa Bcsc töông öùng laø bieán coá chæ chöùa moät phaàn töû cuûa Ω. Ví duï: 1 Tung moät con xuùc saéc caân ñoái, khaûo saùt soá chaám cuûa con xuùc saéc. Pheùp thöû naøy coù 6 bieán coá sô caáp laø Ai =Soá chaám baèng i, i = 1, 6. 2 Laáy ngaãu nhieân 1 bi töø moät hoäp coù 5 bi ñoû, 4 bi xanh vaø 2 bi vaøng, khaûo saùt maøu saéc cuûa bi ñoù. Pheùp thöû naøy coù 3 bcsc. Nguyeãn Ngoïc Phuïng - Tröôøng Ñaïi Hoïc Ngaân Haøng TPHCM XAÙC SUAÁT THOÁNG KEÂ Xaùc suaát coå ñieån Xaùc suaát cuûa moät bieán coá Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Xaùc suaát coå ñieån Ñieàu kieän (Caùc bcsc ñoàng khaû naêng) Caùc bieán coá sô caáp phaûi coù khaû naêng xaûy ra nhö nhau trong moät pheùp thöû. Xaùc suaát cuûa moät bieán coá laø ñaïi löôïng ño löôøng khaû naêng xaûy ra cuûa bieán coá ñoù trong moät pheùp thöû ngaãu nhieân. Xaùc suaát cuûa bieán coá A, kí hieäu laø P(A). Ñònh nghóa Trong tröôøng hôïp ñieàu kieän treân ñöôïc thoûa maõn thì µ(A) P(A) = µ(Ω) µ(A) laø ñoä ño cuûa taäp A. Nguyeãn Ngoïc Phuïng - Tröôøng Ñaïi Hoïc Ngaân Haøng TPHCM XAÙC SUAÁT THOÁNG KEÂ Xaùc suaát coå ñieån Xaùc suaát cuûa moät bieán coá Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Neáu A laø moät taäp höõu haïn phaàn töû thì µ(A) laø soá phaàn töû cuûa A. Ñaây laø ñoä ño ñeám, kí hieäu laø #(A). Neáu A laø moät ñoaïn thaúng thì µ(A) laø ñoä daøi cuûa A. Neáu A laø moät mieàn trong maët phaúng thì µ(A) laø dieän tích cuûa A. Neáu A laø moät khoái trong khoâng gian thì µ(A) laø theå tích cuûa A. Neáu A laø moät khoaûng thôøi gian thì µ(A) laø ñoä daøi cuûa A. Nguyeãn Ngoïc Phuïng - Tröôøng Ñaïi Hoïc Ngaân Haøng TPHCM XAÙC SUAÁT THOÁNG KEÂ Xaùc suaát coå ñieån Xaùc suaát cuûa moät bieán coá Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Xaùc suaát coå ñieån Ví duï: 1 Tung moät con xuùc saéc caân ñoái, khaûo saùt soá chaám cuûa xuùc saéc. Tính xaùc suaát ñeå soá chaám laø soá chaün. 2 Laáy ngaãu nhieân 1 bi töø moät hoäp coù 5 bi ñoû, 4 bi xanh vaø 2 bi vaøng. Tính xaùc suaát ñeå laáy ñöôïc bi maøu xanh. 3 Tung hai con xuùc saéc caân ñoái, khaûo saùt soá chaám cuûa caùc xuùc saéc. Tính xaùc suaát ñeå soá chaám cuûa 2 con xuùc saéc gioáng nhau. Nguyeãn Ngoïc Phuïng - Tröôøng Ñaïi Hoïc Ngaân Haøng TPHCM XAÙC SUAÁT THOÁNG KEÂ Xaùc suaát coå ñieån Xaùc suaát cuûa moät bieán coá Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Tính chaát Tính chaát (1) P(∅) = 0, P(Ω) = 1 ∅ = A = Ω ⇒ 0 < P(A) < 1 Tính chaát (2) (A ⇒ B) ⇒ (P(A) ≤ P(B)) Tính chaát (3) (A ⇔ B) ⇒ (P(A) = P(B)) Nguyeãn Ngoïc Phuïng - Tröôøng Ñaïi Hoïc Ngaân Haøng TPHCM XAÙC SUAÁT THOÁNG KEÂ Xaùc suaát coå ñieån Xaùc suaát cuûa moät bieán coá Xaùc suaát theo thoáng keâ Caùc nguyeân lyù xaùc suaát Lò ...