Danh mục

Bài giảng Xác xuất thống kê - Nguyễn Độc Lập

Số trang: 298      Loại file: pdf      Dung lượng: 9.59 MB      Lượt xem: 18      Lượt tải: 0    
Jamona

Phí tải xuống: 26,000 VND Tải xuống file đầy đủ (298 trang) 0
Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Xác xuất thống kê do Nguyễn Độc Lập biên soạn có nội dung giới thiệu: Xác xuất, thống kê. Bài giảng sẽ giúp người học nắm các kiến thức cơ bản về: giải tích tổ hợp, chỉnh hợp, hoán vị, tổ hợp, nhị thức Newton, các khái niệm về xác suất, phép thử và các loại biến cố, xác suất và các định nghĩa về xác suất... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Xác xuất thống kê - Nguyễn Độc Lập ĐẠI HỌC Y DƯỢC THÁI Biên soạn: Nguyễn Độc Lập NGUYÊN Bộ môn: Toán - TinBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Giới thiệu PHẦN II. XÁC SUẤT Chương I Chương II Chương III Chương IV PHẦN III. THỐNG Kấ Chương V Chương VI Chương VII Chương VIII MỤC LỤCBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Chương I. Bổ túc về giải tích tổ hợp 1.1. Chỉnh hợp 1.2. Hoán vị 1.3. Tổ hợp 1.4. Nhị thức Newton Chương II. Các khái niệm về xác suất 2.1. Phép thử và các loại biến cố 2.2. Xác suất và các định nghĩa về xác suấtBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Chương III. Các định lý xác suất 3.1. Công thức cộng xác suất 3.2. Công thức nhân xác suất 3.3. Công thức xác suất đầy đủ, công thức Bayes 3.4. Công thức Bernoulli Chương IV. Đại lượng ngẫu nhiên và quy luật PP xác suất 4.1. Định nghĩa và phân loại đại lượng ngẫu nhiên 4.2. Quy luật phân phối xác suất của đại lượng ngẫu 4.3. Các tham số đặc trưng của đại lượng ngẫu nhiên 4.4. Một số quy luật phân phối xác suất thông dụngBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Chương V. Lý thuyết mẫu 5.1. Tổng thể và mẫu 5.2. Các đặc trưng của mẫu. 5.3. Mẫu thu gọn, phương pháp đổi biến Chương VI. Ước lượng các tham số của đại lượng ngẫu nhiên 6.1. Các phương pháp ước lượng điểm 6.2. Phương pháp ước lượng bằng khoảng tin cậyBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Chương VII. Kiểm định giả thiết thống kê 7.1. Quy tắc kiểm định giả thiết 7.2. Các sai lầm mắc phải khi kiểm định 7.3. Kiểm định giả thiết về kỳ vọng toán của ĐLNN có PP chuẩn. 7.4. Kiểm định giả thiết về xác suất hoặc tỷ lệBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Chương VIII. Lý thuyết tương quan và hồi quy 8.1. Hệ số tương quan mẫu 8.2. Tính chất của hệ số tương quan mẫu 8.3. ý nghĩa của hệ số tương quan 8.4. Cách tính hệ số tương quan 8.5. Đường hồi quy tuyến tính thực nghiệm 8.6. Hàm hồi quy 8.7. Phương trỡnh đường hồi quy tuyến tính 8.8. Tỡm phương trỡnh hồi quy TT dựa vào hệ số tương quan mẫuBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái NguyênBiên soạn: Nguyễn Độc Lập - Trường Đại học Y Dược – Đại học Thái Nguyên Ch¬ng I Bæ tóc vÒ gi¶i tÝch tæ hîpBài giảng XSTK – Biên soạn: Nguyễn Độc Lập – Đại học Y Dược Thái Nguyên 1.1. ChØnh hîp VÝ dô 1: Víi ba ch÷ sè 1, 2, 3; Hái cã thÓ t¹o nªn ®îc baonhiªu sè gåm hai ch÷ sè kh¸c nhau tõ ba ch÷ sè ®· cho? Gi¶i: TËp hîp c¸c phÇn tö lµ:  , 2,3 (3 phÇn tö). Sè gåm 1hai ch÷ sè kh¸c nhau cã thÓ lµ c¸c cÆp: 12, 13, 21, 23, 31,32. (6 sè). NhËn xÐt: Mçi sè t¹o thµnh lµ mét nhãm cã thø tù gåm 2trong 3 ch÷ sè ®· cho vµ mçi phÇn tö chØ xuÊt hiÖn trong mÉunhiÒu nhÊt mét lÇn (®ã lµ mÉu kh«ng lÆp). Bài giảng XSTK – Biên soạn: Nguyễn Độc Lập – Đại học Y Dược Thái Nguyên §Þnh nghÜa: Ta gäi chØnh hîp chËp k tõ n phÇn tö lµmét nhãm cã thø tù gåm k phÇn tö kh¸c nhau lÊy tõ n phÇn tö kcho. (kVÝ dô 2: Cã bao nhiªu sè cã 3 ch÷ sè kh¸c nhau ®îc t¹onªn bëi 6 ch÷ sè 1, 2, 3, 4, 5, 6 ?Gi¶i: §ã lµ chØnh hîp chËp 3 cña 6 3 6! A6   4.5.6  120 (6  3)!Chó ý: Trong c¸ch lÊy mÉu tõ tËp hîp chÝnh cã n phÇn tö, ta lÊy mÉu chøa k phÇn tö vµ quy íc r»ng hai mÉu lµ kh¸c nhau nÕu: + Chóng kh¸c nhau vÒ tªn gäi trong mÉu + Chóng kh¸c nhau vÒ thø tù xuÊt hiÖn trong mÉu. Bài giảng XSTK – Biên soạn: Nguyễn Độc Lập – Đại học Y Dược Thái NguyênVÝ dô: trong 6 sè 1,2,3,4,5,6 lÊy ra c¸c mÉu gåm 3 ch÷ sè+ Hai mÉu (123) vµ (456) lµ kh¸c nhau (cã c¸c phÇn tö kh¸c nhau vÒ tªn)+ Hai mÉu (123) vµ 321) lµ kh¸c nhau (kh¸c nhau vÒ thø tù xuÊt hiÖn) MÉu ®îc t¹o b»ng c¸ch nh vËy gäi lµ mÉu cã thø tù.Trong chØnh hîp kh«ng lÆp ta ®ßi hái c¸c phÇn tö xuÊt hiÖntrong mÉu kh«ng qu¸ mét lÇn. NÕu bá qua h¹n chÕ nµy ta cãchØnh hîp lÆp. Bài giảng XSTK – Biên soạn: Nguyễn Độc Lập – Đại học Y Dược Thái Nguyên§Þnh nghÜa: Ta gäi chØnh hîp lÆp chËp k cña n phÇn tö lµmét nhãm cã thø tù gåm k phÇn tö n phÇn tö ®· cho, mçiphÇn tö cã thÓ cã mÆt 1,2,3,..., k lÇn trong nhãm t¹o thµnh. (뮩y cã thÓ k < n). Ký hiÖu A nn  n k .NhËn xÐt: Trong vÝ dô 1: sè chØnh hîp lÆp chËp 2 cña 3 lµ: 11, 12, 13, 21, 22, 23, 31, 32, 33. (gåm 9 sè)  A32  3 2  9 . Trong vÝ dô 2: sè chØnh hîp lÆp chËp 3 lµA6  6 2  216  120  A6  120 3 3(v× ë ®©y ®· xuÊt hiÖn thªm c¸c sè 111, 222, 121, 255...) ...

Tài liệu được xem nhiều: