Danh mục

Bài tập cơ sở viễn thám 'Thực hành phân loại thông tin trên tư liệu ảnh viễn thám trong ENVI (P1)

Số trang: 11      Loại file: doc      Dung lượng: 12.39 MB      Lượt xem: 12      Lượt tải: 0    
Hoai.2512

Hỗ trợ phí lưu trữ khi tải xuống: 11,000 VND Tải xuống file đầy đủ (11 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Phương pháp phân loại Isodata sẽ tính toán cách thức phân lớp trong không gian dữ liệu, sau đó nhóm đi nhóm lại các pixel bằng kỹ thuật khoảng cách tối thiểu (minimum distance). Mỗi lần nhóm lại các lớp này sẽ tính toán lại cách thức phân lớp và phân loại lại các pixel theo cách thức phân lớp mới.
Nội dung trích xuất từ tài liệu:
Bài tập cơ sở viễn thám “Thực hành phân loại thông tin trên tư liệu ảnh viễn thám trong ENVI" (P1) TRƯỜNG ĐẠI HỌC MỎ - ĐỊA CHẤT KHOA CÔNG NGHỆ THÔNG TIN BỘ MÔN TIN HỌC TRẮC ĐỊA CƠ SỞ VIỄN THÁM BÀI TẬP Đề tài: “Thực hành phân loại thông tin trên tư liệu ảnh viễn thám trong ENVI.” SV thực hành: Giáo viên hướng dẫn: Nguyễn Viết Quân. TS. Nguyễn Thị Mai Dung Lớp tin học trắc địa K51 HÀ NỘI - NĂM 2010 MỤC LỤC I. PHÂN LOẠI THÔNG TIN TRÊN TƯ LIỆU ẢNH VIỄN THÁM.......................3 I.1. Phân loại không kiểm định Isodata và K-Means..........................................................................3 I. PHÂN LOẠI THÔNG TIN TRÊN TƯ LIỆU ẢNH VIỄN THÁM I.1. Phân loại không kiểm định Isodata và K-Means Khởi động phần phân loại không kiểm định của ENVI bằng cách chọn Classification > Unsupervised > Method, ở đây Method hoặc là K-Means hoặc Isodata. Hình : Menu phân loại không kiểm định Phương pháp phân loại kiểm định chủ yếu dùng vào mục đích dựa vào ảnh phân loại này đi khảo sát lựa chọn khu vực lấy mẫu để phân loại có kiểm định… I.1.1. Phương pháp phân loại Isodata Phương pháp phân loại Isodata sẽ tính toán cách thức phân lớp trong không gian dữ liệu, sau đó nhóm đi nhóm lại các pixel bằng kỹ thuật khoảng cách tối thiểu (minimum distance). Mỗi lần nhóm lại các lớp này sẽ tính toán lại cách thức phân lớp và phân loại lại các pixel theo cách thức phân lớp mới. Quá trình này sẽ tiếp tục lặp đi lặp lại đến khi số các pixel trong mỗi lớp nhỏ hơn ngưỡng thay đổi pixel đã chọn hoặc đạt tối đa số lần lặp đi lặp lại đó. Chọn File ảnh cần phân loại bldr_tm (ảnh đã được nắn chỉnh hình học ở phần nắn ảnh). Ảnh cần phân loại Trên menu chính của ENVI chọn Classification > Unsupervised > Isodata. Hộp thoại hiện ra cần thiết lập các tham số sau trong hộp thoại. Hình: Hộp thoại phân loại theo phương pháp Isodata  Number of classes: Chọn số lớp tối thiểu – min và tối đa – max để phân loại.  Maximum Iterations: Số lần tính toán lặp lại tối đa. Việc phân loại sẽ dừng lại khi đạt tới số lần lặp tối đa đưa ra.  Change Threshold: Ngưỡng thay đổi sau mỗi lần tính toán lặp lại. Việc phân loại cũng sẽ dừng lại khi sau mỗi lần tính lặp lại, số phần trăm biến động của các lớp nhỏ hơn ngưỡng biến động được xác định.  Minimum pixel in class: Số pixel nhỏ nhất có thể có của một lớp.  Maximum class Stdv: Ngưỡng độ lệch chuẩn tối đa của một lớp. Nếu độ lệch chuẩn của một lớp lớn hơn ngưỡng này thì lớp đó sẽ bị chia ra làm hai.  Minimum class Distance: Khoảng cách tối thiểu giữa các giá trị trung bình của các lớp. Nếu khoảng cách giữa các giá trị trung bình của các lớp nhỏ hơn giá trị nhập vào thì các lớp đó sẽ được gộp vào.  Maximum Merge Pairs: Số các cặp lớp tối đa có thể được gộp.  Maximum Stdev From Mean: Khoảng cách độ lệch chuẩn tối đa từ giá trị trung bình của lớp.  Maximum Distance Error: Khoảng sai số tối đa cho phép xung quanh giá trị trung bình của lớp. Tại Output Result to tích chọn ghi lưu theo file dữ liệu hoặc bấm chọn Memory. Nhấp OK. Ta thu được kết quả. Chọn các tham số trong hộp thoại trên để so sánh. Để có thể so sánh một cách chính xác và hiệu quả của việc chọn lựa các tham số thì ta sử dụng trên cùng một ảnh, đó là ảnh đã được nắn ở bài tập trước. Ảnh gốc chưa phân loại dùng để so sánh. Khi chọn lựa các tham số nhất định thì các tham số khác để mặc định theo chương trình để dễ quan sát và nhận xét. Chọn tham số:Number of classes . Quan sát trên ảnh phân loại ta Số lớp phân loại là 7 nhiều hơn Số lớp phân loại ở đây là 12. thấy ảnh được phân ra thành 3 trường hợp bên, và độ chính xác Đã nhiều lên rất nhiều so với lớp. Ở đây độ chính xác về đã tăng lên. Mức độ phân loại 2 trường hợp kia. Nhưng mức thông tin phân loại có độ chính đã chi tiết lên. độ chia nhỏ ra rất nhiều làm xác kém. cho khả năng quan sát sự khác biệt là rất khó khăn. Nhận xét chung: Công việc lựa chọn tham số phân chia ảnh sau khi phân loại ra làm bao nhiêu lớp là rất cần thiết. Tuy là việc chọn lựa lớp là do chương trình tự động chọn theo ngưỡng nhất định nhưng ta cần chọn số lớp tối thiểu và tối đa để chương trình phân chia cho phù hợp nhất. Tránh tình trạng số lớp quá ít hoặc quá nhiều sẽ làm ảnh hưởng đến khả năng phân chia vùng trên ảnh sau khi phân loại. Ta nên chọn cho phù hợp nhất. Chọn tham số: Maximum Iterations Công việc tiến hành lặp là hai Việc gộp các điểm pixel được Số lần lặp là 5 lần, ảnh sau lần mức độ tính toán gộp các lặp lại 3 lần ta quan sát độ phân khi phân loại có mức độ phân pixel lại thực thi 2 lần có độ chia chi tiết trên ảnh nhiều hơn chia chi tiết hơn so với 2 phân chia các vùng khác nhau ở so với số lần lặp là 2. trường hợp bên nhưng so với mức độ trung bình. số lần lặp là 3 cũng không khác là mấy. Từ 3 trường hợp trên ta có nhận xét: Việc chọn lựa số lần lặp sẽ quyết định việc gộp các điểm pixel ở mức độ như thế nào. Số lần tính toán lại càng nhiều thì mức độ gộp càng chính xác nhưng đến một mức độ nào đó sẽ dừng lại. Vì vậy ta cần xác định số lần lặp cho hiệu quả để cho việc tính toán lặp được nhanh chóng và không làm mất hiệu quả của việc phân loại. Chọn tham số: Change Threshold Việc phân loại sẽ dừng lại khi Việc phân loại sẽ dừng lại k ...

Tài liệu được xem nhiều: