Danh mục

Bài tập toán cao cấp A2, C2 - Lê Hữu Kỳ Sơn

Số trang: 15      Loại file: pdf      Dung lượng: 218.54 KB      Lượt xem: 19      Lượt tải: 0    
Thư viện của tui

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Toán cao cấp dùng cho Cao đẳng và Đại Học. Toán cao cấp cũng có 1 số môn khá giống với những gì các bạn được học ở cấp 3. VD: Hình học không gian ( cao cấp hơn 1 ít thôi) Xác suất thông thống kê..
Nội dung trích xuất từ tài liệu:
Bài tập toán cao cấp A2, C2 - Lê Hữu Kỳ Sơn B CÔNG THƯƠNG TRƯ NG Đ I H C CÔNG NGHI P TH C PH M TP. HCM LÊ H U KỲ SƠN Bài t p Toán cao c p A2 - C2 MSSV: . . . . . . . . . . . . . . . . . . . . . . . . . . H tên: . . . . . . . . . . . . . . . . . . . . . . . . . . TP. HCM – Ngày 15 tháng 2 năm 2012 M cl c 1 MA TR N VÀ Đ NH TH C 3 1.1 Ma tr n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Đ nh th c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Ma tr n ngh ch đ o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 H ng c a ma tr n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 H PHƯƠNG TRÌNH TUY N TÍNH 8 3 KHÔNG GIAN VECTOR 9 3.1 Không gian vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Không gian Euclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 ÁNH X TUY N TÍNH 11 4.1 Ánh x tuy n tính . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Giá tr riêng - vector riêng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 D NG TOÀN PHƯƠNG 14 Tài li u tham kh o 15 2 Chương 1 MA TR N VÀ Đ NH TH C 1.1 Ma tr n       1 2 0 1 2 −3 1. Cho A = −1 3 ;B =  3 2 ;C = 1 2 . 3 4 −2 3 4 −1 Tính (A + B) + C; A + (B + C); 3A − 2B; (3A)t ; (3A − 2B)t .       1 2 1 2 3 1 2 −3 0 2. Cho ma tr n A = 0 1 2 ;B = −1 1 0  ;C = 1 2 4. 3 1 1 1 2 −1 4 −1 0 Tính A.B.C và A.C + B.C.    a b c 1 a c 3. Tính A =  c b a 1 b b . 1 1 1 1 c a 1 0 4. Cho ma tr n , hãy tìm ma tr n A2012 . 2 1 1 0 5. Cho ma tr n , hãy tìm ma tr n A2012 . 5 1 cos α sin α 6. Cho ma tr n A = , hãy tìm ma tr n A2012 . sin α − cos α 0 1 7. Cho ma tr n A = , hãy tìm ma tr n A2012 . 1 0 0 0 8. Cho ma tr n A = . Tính ma tr n (I − A)2012 . 1 0   0 0 1 9. Cho ma tr n J = 1 0 0. Tính ma tr n J 2012 0 1 0 0 0 10. Cho ma tr n A = . Hãy tính t ng sau 1 0 2012 2n An = In + 2A + 4A2 + 8A3 + 16A4 + · · · + 22011 A2011 + 22012 A2012 n=0 3 0 0 11. Cho ma tr n A = . Hãy tính t ng sau −1 0 2012 An = In + A + A2 + A3 + A4 + · · · + A2011 + A2012 n=0 0 −1 12. Cho ma tr n A = . Hãy tính t ng sau 0 0 2012 2n An = In + 2A + 4A2 + 8A3 + 16A4 + · · · + 22011 A2011 + 22012 A2012 n=0 ...

Tài liệu được xem nhiều: