Danh mục

Bài tập Xử lý tín hiệu số, Chương 4

Số trang: 0      Loại file: pdf      Dung lượng: 721.51 KB      Lượt xem: 22      Lượt tải: 0    
10.10.2023

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (0 trang) 0
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Lọc FIR và tích chập Các phương pháp xử lý khối Khối vào gồm L mẫu: x = [x0 x1 x2 x3 … xL-1] Đáp ứng xung có chiều dài M+1: (bộ lọc FIR bậc M) h = [h0 h1 h2 h3 … hM] Dạng trực tiếp (Direct form) Bộ lọc nhân quả FIR, bậc M: h = [h0 h1 h2 h3 … hM] Tích chập: với: m 0≤m≤M 0≤n–m≤L–1m≤n≤L–1+m Suy ra: 0≤n≤L–1+M = y(n) = [y0 y1 y2 … yL – 1 + M] Chiều dài Ly = L + M = Lx + Lh - 1 1. Các phương pháp xử...
Nội dung trích xuất từ tài liệu:
Bài tập Xử lý tín hiệu số, Chương 4 Xử lý số tín hiệu Chương 4: Lọc FIR và tích chập 1. Các phương pháp xử lý khối  Khối vào gồm L mẫu: x = [x0 x1 x2 x3 … xL-1]  Đáp ứng xung có chiều dài M+1: (bộ lọc FIR bậc M) h = [h0 h1 h2 h3 … hM] x0 x1 x2 ... xL-1 H y0 y1 y2 y3 y4 … 1. Các phương pháp xử lý khối a. Tích chập (convolution) x0 x1 x2 ... xL-1 H y0 y1 y2 y3 y4 … y (n)   hm xn  m    xm hn  m  m m y ( n)   h(i) x( j ) i, j i  j n 1. Các phương pháp xử lý khối b. Dạng trực tiếp (Direct form) Bộ lọc nhân quả FIR, bậc M: h = [h0 h1 h2 h3 … hM] Tích chập: y (n)   hm xn  m  với: m 0≤m≤M 0≤n–m≤L–1m≤n≤L–1+m Suy ra: 0≤n≤L–1+M => y(n) = [y0 y1 y2 … yL – 1 + M] Chiều dài Ly = L + M = Lx + Lh - 1 1. Các phương pháp xử lý khối 0≤m≤M (1) 0≤n–m≤L–1 n–L+1≤m≤n (2) (1) & (2) => max(0, n – L + 1) ≤ m ≤ min(n,M) Công thức tích chập trực tiếp: min( n , M ) y ( n)   hm xn  m m  max( 0 , n  L 1) với n = 0, 1, …, L + M – 1 1. Các phương pháp xử lý khối c) Dạng bảng tích chập (convolution table) y ( n)   h(i) x( j ) i, j i j n x0 x1 x2 x3 x4 h0 h0x0 h0x1 h0x2 h0x3 h0x4 h1 h1x0 h1x1 h1x2 h1x3 h1x4 h2 h2x0 h2x1 h2x2 h2x3 h2x4 h3 h3x0 h3x1 h3x2 h3x3 h3x4 1. Các phương pháp xử lý khối  Ví dụ: tính tích chập của h = [1, 2, -1, 1] và x = [1, 1, 2, 1, 2, 2, 1, 1] h x 1 1 2 1 2 2 1 1 1 1 1 2 1 2 2 1 1 2 2 2 4 2 4 4 2 2 -1 -1 -1 -2 -1 -2 -2 -1 -1 1 1 1 2 1 2 2 1 1 y = [1 3 3 5 3 7 4 3 3 0 1] 1. Các phương pháp xử lý khối d) Dạng tuyến tính bất biến theo thời gian (LTI) y n    xm hn  m  m x = [x0 x1 x2 x3 x4 ] hay viết cách khác x(n) = x0.(n) + x1. (n–1) + x2.(n–2) + x3.(n–3) + x4.(n-4) Suy ra: y(n) = x0.h(n) + x1. h(n–1) + x2.h(n–2) + x3.h(n–3) + x4.h(n-4) 1. Các phương pháp xử lý khối h0` h1 h2 h3 h4 x0.h0 x0.h1 x0.h2 x0.h3 x0.h4 x1.h0 x1.h1 x1.h2 x1.h3 x1.h4 x2.h0 x2.h1 x2.h2 x2.h3 x2.h4 x3.h0 x3.h1 x3.h2 x3.h3 x3.h4 x4.h0 x4.h1 x4.h2 x4.h3 x4.h4 1. Các phương pháp xử lý khối Vẽ bảng: h0 h1 h2 h3 0 0 0 0 x0 x0h0 x0h1 x0h2 x0h3 x1 x1h0 x1h1 x1h2 x1h3 x2 x2h0 x2h1 x2h2 x2h3 x3 x3h0 x3h1 x3h2 x3h3 x4 x4h0 x4h1 x4h2 x4h3 yn y0 y1 y2 y3 y4 y5 y6 y6 1. Các phương pháp xử lý khối  Ví dụ: tính tích chập của h = [1, 2, -1, 1] và x = [1, 1, 2, 1, 2] 1 2 -1 1 0 0 0 0 1 1 2 -1 1 1 1 2 -1 1 2 2 4 -2 2 1 1 2 -1 1 2 2 4 -2 2 yn 1 3 3 5 3 5 -1 2 1. Các phương pháp xử lý khối e. Dạng ma trận + x là vector chiều dài L y là vector chiều dài L + M + Dạng ma trận: y = Hx với H: ma trận (M+L) x L, xác định từ đáp ứng xung h(n)  h0 0 0 0 0  + Dễ dàng thấy h h 0 0 0  1 0   h2 h1 h0 0 0   H  h3 h2 h1 h0 0 0 h3 h2 h1 h0    0 0 h3 h2 h1  0 0 0 h3 h2    0  0 0 0 h3   1. Các phương pháp xử lý khối + Cũng có thể viết: y = X.h với X là ma trận xác định từ x như sau:  x0 0 0 0  x x0 0 0   1   x2 x1 x0 0    X   x3 x2 x1 x0   x4 x3 x2 x1    0 x4 x3 x2  0 0 x4 x3    0  0 0 x4   1. Các phương pháp xử lý khối f. Dạng lật và trượt yn = h0xn + h1xn-1 + … + hMxn-M h3 h2 h1 h0 h0 h0 3 2 3 1 2 1 h3 h2 h1 h0 h3 h2 h1 h0 0 0 0 x0 x1 x2 … xn-3 xn-2 xn-1 xn xL-1 0 0 0 y0 y1 y2 yn yL-1+M 1. Các phương ...

Tài liệu được xem nhiều: