Bài thảo luận nhóm: Điểm trung bình môn Lý thuyết xác suất thống kê toán của sinh viên Trường Đại học Thương mại
Số trang: 29
Loại file: doc
Dung lượng: 1.64 MB
Lượt xem: 30
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài thảo luận nhóm "Điểm trung bình môn Lý thuyết xác suất thống kê toán của sinh viên Trường Đại học Thương mại" gồm có 2 phần trình bày về lý thuyết thống kê toán, ước lượng tham số của đại lượng ngẫu nhiên, kiểm định giả thuyết thống kê,..Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Bài thảo luận nhóm: Điểm trung bình môn Lý thuyết xác suất thống kê toán của sinh viên Trường Đại học Thương mại TRƯỜNG ĐẠI HỌC THƯƠNG MẠI BÀI THẢO LUẬN NHÓM Học phần: LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Đề tài: Điểm trung bình môn Lý thuyết xác suất thống kê toán của sinh viên Trường Đại học Thương mại Nhóm: 9 Lớp HP: 1474AMAT0111 Giáo viên hướng dẫn: Nguyễn Thị Hiên Hà Nội, ngày 15 tháng 10 năm 2014 MỤC LỤC TRANG PHẦN A: LÝ THUYẾT THỐNG KÊ TOÁN................................3 I. Ước lượng tham số của đại lượng ngẫu nhiên..........3 1. Ước lượng bằng khoảng tin cậy...................................................3 2. Ước lượng các tham số của ĐLNN .............................................3 2.1 Ước lượng kỳ vọng toán của ĐLNN......................................4 2.2 Ước lượng tỉ lệ........................................................................6 2.3 Ước lượng phương sai............................................................6 II. Kiểm định giả thuyết thống kê........................................7 1. Một số khái niệm và định nghĩa.....................................................7 1.1 Giả thuyết thống kê.................................................................7 1.2 Tiêu chuẩn kiểm định..............................................................7 1.3 Miền bác bỏ............................................................................. 7 1.4 Các loại sai lầm.......................................................................8 2. Các trường hợp kiểm định.............................................................8 2.1 Kiểm định giả thuyết về kỳ vọng toán của ĐLNN................8 2.2 Kiểm định về tỉ lệ đám đông...................................................10 PHẦN B: BÀI TẬP.............................................................................. 9 I. Đề bài.......................................................................................9 II. Giải bài tập.............................................................................15 2 1. Bài 1................................................................................................ 15 2. Bài 2................................................................................................ 27 3 Phần A: LÝ THUYẾT THỐNG KÊ TOÁN I. Ước lượng các tham số của ĐLNN Xét một ĐLNN X thể hiện trên một đám đông nào đó. Các số đặc trưng của X được gọi là các tham số lý thuyết (hay tham số của đám đông). Ký hiệu chung tham số lý thuyết cần ước lượng là θ . Có hai phương pháp ước lượng θ là: Ước lượng điểm Ước lượng bằng khoảng tin cậy. 1. Ước lượng bằng khoảng tin cậy Để ước lượng tham số θ của ĐLNN X, trước hết từ đám đông ta lấy ra mẫu ngẫu nhiên W = (X1,X2, … , Xn). Tiếp đến ta xây dựng thống kê G = f(X1,X2, … , Xn, θ), sao cho quy luật phân phối xác suất của G hoàn toàn xác định (không phụ thuộc vào tham số θ). Với xác suất γ = 1 – α cho trước, ta xác định cặp giá trị α1, α2 thỏa mãn các điều kiện α1 ≥ 0, α2 ≥ 0 và α1 + α2 = α. Vì quy luật phân phối xác suất của G ta đã biết, ta tìm được các phân vị g1α1 và gα2 sao cho P(G > g1α1) = 1 – α1 và P(G > ga2)= α2. Khi đó: P(g1α1 2. Ước lượng các tham số của ĐLNN 2.1 Ước lượng kỳ vọng toán của ĐLNN Để ước lượng kỳ vọng toán E(X) = µ của ĐLNN X, từ đám đông ta lấy mẫu W=(X1,X2,…,Xn). Từ mẫu này ta tìm được trung bình mẫu X và phương sai mẫu điều chỉnh S’² . Ta sẽ ước lượng µ thông qua X . Xét các trường hợp sau: a) ĐLNN X trên đám đông có phân phối chuẩn đã biết. b) ĐLNN X trên đám đông có phân phối chuẩn chưa biết. c) Chưa biết quy luật phân phối xác suất của X nhưng n>30. Khi n lớn, X có phân phối xấp xỉ chuẩn. Mặt khác ta luôn có E ( X ) = µ và σ2 Var ( X ) = => ) n Ta xây dựng thống kê: U = ~ N(0,1). Khoảng tin cậy đối xứng ( lấy α1 = α2 = α/2) Với độ tin cậy γ = 1 – α cho trước ta tìm được phân vị chuẩn uα 2 sao cho: P(|U| số xác định ) Trong 1 lần lấy mẫu ta tìm được 1 giá trị cụ thể x của X . Khi đó ta có 1 khoảng ti ...
Nội dung trích xuất từ tài liệu:
Bài thảo luận nhóm: Điểm trung bình môn Lý thuyết xác suất thống kê toán của sinh viên Trường Đại học Thương mại TRƯỜNG ĐẠI HỌC THƯƠNG MẠI BÀI THẢO LUẬN NHÓM Học phần: LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Đề tài: Điểm trung bình môn Lý thuyết xác suất thống kê toán của sinh viên Trường Đại học Thương mại Nhóm: 9 Lớp HP: 1474AMAT0111 Giáo viên hướng dẫn: Nguyễn Thị Hiên Hà Nội, ngày 15 tháng 10 năm 2014 MỤC LỤC TRANG PHẦN A: LÝ THUYẾT THỐNG KÊ TOÁN................................3 I. Ước lượng tham số của đại lượng ngẫu nhiên..........3 1. Ước lượng bằng khoảng tin cậy...................................................3 2. Ước lượng các tham số của ĐLNN .............................................3 2.1 Ước lượng kỳ vọng toán của ĐLNN......................................4 2.2 Ước lượng tỉ lệ........................................................................6 2.3 Ước lượng phương sai............................................................6 II. Kiểm định giả thuyết thống kê........................................7 1. Một số khái niệm và định nghĩa.....................................................7 1.1 Giả thuyết thống kê.................................................................7 1.2 Tiêu chuẩn kiểm định..............................................................7 1.3 Miền bác bỏ............................................................................. 7 1.4 Các loại sai lầm.......................................................................8 2. Các trường hợp kiểm định.............................................................8 2.1 Kiểm định giả thuyết về kỳ vọng toán của ĐLNN................8 2.2 Kiểm định về tỉ lệ đám đông...................................................10 PHẦN B: BÀI TẬP.............................................................................. 9 I. Đề bài.......................................................................................9 II. Giải bài tập.............................................................................15 2 1. Bài 1................................................................................................ 15 2. Bài 2................................................................................................ 27 3 Phần A: LÝ THUYẾT THỐNG KÊ TOÁN I. Ước lượng các tham số của ĐLNN Xét một ĐLNN X thể hiện trên một đám đông nào đó. Các số đặc trưng của X được gọi là các tham số lý thuyết (hay tham số của đám đông). Ký hiệu chung tham số lý thuyết cần ước lượng là θ . Có hai phương pháp ước lượng θ là: Ước lượng điểm Ước lượng bằng khoảng tin cậy. 1. Ước lượng bằng khoảng tin cậy Để ước lượng tham số θ của ĐLNN X, trước hết từ đám đông ta lấy ra mẫu ngẫu nhiên W = (X1,X2, … , Xn). Tiếp đến ta xây dựng thống kê G = f(X1,X2, … , Xn, θ), sao cho quy luật phân phối xác suất của G hoàn toàn xác định (không phụ thuộc vào tham số θ). Với xác suất γ = 1 – α cho trước, ta xác định cặp giá trị α1, α2 thỏa mãn các điều kiện α1 ≥ 0, α2 ≥ 0 và α1 + α2 = α. Vì quy luật phân phối xác suất của G ta đã biết, ta tìm được các phân vị g1α1 và gα2 sao cho P(G > g1α1) = 1 – α1 và P(G > ga2)= α2. Khi đó: P(g1α1 2. Ước lượng các tham số của ĐLNN 2.1 Ước lượng kỳ vọng toán của ĐLNN Để ước lượng kỳ vọng toán E(X) = µ của ĐLNN X, từ đám đông ta lấy mẫu W=(X1,X2,…,Xn). Từ mẫu này ta tìm được trung bình mẫu X và phương sai mẫu điều chỉnh S’² . Ta sẽ ước lượng µ thông qua X . Xét các trường hợp sau: a) ĐLNN X trên đám đông có phân phối chuẩn đã biết. b) ĐLNN X trên đám đông có phân phối chuẩn chưa biết. c) Chưa biết quy luật phân phối xác suất của X nhưng n>30. Khi n lớn, X có phân phối xấp xỉ chuẩn. Mặt khác ta luôn có E ( X ) = µ và σ2 Var ( X ) = => ) n Ta xây dựng thống kê: U = ~ N(0,1). Khoảng tin cậy đối xứng ( lấy α1 = α2 = α/2) Với độ tin cậy γ = 1 – α cho trước ta tìm được phân vị chuẩn uα 2 sao cho: P(|U| số xác định ) Trong 1 lần lấy mẫu ta tìm được 1 giá trị cụ thể x của X . Khi đó ta có 1 khoảng ti ...
Tìm kiếm theo từ khóa liên quan:
Lý thuyết xác suất thống kê toán Xác suất thống kê toán Lý thuyết xác suất Kiểm định giả thuyết thống kê Ước lượng phương sai Kiểm định về tỉ lệ đám đôngGợi ý tài liệu liên quan:
-
Bài giảng Xác suất và thống kê trong y dược - Chương 1: Khái niệm cơ bản của lý thuyết xác suất
69 trang 164 0 0 -
Bài giảng Xác suất thống kê và quy hoạch thực nghiệm: Chương 5.2 - Nguyễn Thị Thanh Hiền
27 trang 121 0 0 -
Bài giảng Xác suất thống kê - Chương 6: Kiểm định giả thuyết thống kê (Trường ĐH Thương mại)
58 trang 111 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 74 0 0 -
Giáo trình Lý thuyết xác suất và thống kê toán học - Phần 1
91 trang 69 0 0 -
Đặc trưng thống kê và hồi quy với dữ liệu khoảng
5 trang 67 0 0 -
Bài giảng Lý thuyết xác suất và thống kê toán - Bài 5: Cơ sở lý thuyết mẫu
18 trang 55 0 0 -
Giáo trình Xác suất thống kê: Phần 1 - PGS.TS Nguyễn Thị Dung
104 trang 53 0 0 -
Giáo trình Phương pháp thống kê trong khí hậu: Phần 1
98 trang 48 0 0 -
Thảo luận nhóm: Lý thuyết xác suất và thống kê toán
11 trang 46 0 0