Danh mục

Báo cáo hóa học: Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space

Số trang: 14      Loại file: pdf      Dung lượng: 531.66 KB      Lượt xem: 8      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space
Nội dung trích xuất từ tài liệu:
Báo cáo hóa học: " Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space"Hindawi Publishing CorporationJournal of Inequalities and ApplicationsVolume 2011, Article ID 479576, 14 pagesdoi:10.1155/2011/479576Research ArticleHypersingular Marcinkiewicz Integrals alongSurface with Variable Kernels on Sobolev Spaceand Hardy-Sobolev Space Wei Ruiying and Li Yin School of Mathematics and Information Science, Shaoguan University, Shaoguan 512005, China Correspondence should be addressed to Wei Ruiying, weiruiying521@163.com Received 30 June 2010; Revised 5 December 2010; Accepted 20 January 2011 Academic Editor: Andrei Volodin Copyright q 2011 W. Ruiying and L. Yin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ≥ Let α 0, the authors introduce in this paper a class of the hypersingular Marcinkiewicz integrals along surface with variable kernels defined by μΦ,α f x Ω Ên Ën−1 1/2 ∞ 2 Ω x, y /|y|n−1 f x − Φ |y| y dy| dt/t3 ∈ L∞ | , where Ω x, z × Lq 2α |y |≤t 0 with q > max{1, 2 n − 1 / n 2α }. The authors prove that the operator μΦ,α is bounded from Ω Sobolev space Lα Ên to Lp Ên space for 1 < p ≤ 2, and from Hardy-Sobolev space Hα Ên to p p L Ê space for n/ n α < p ≤ 1. As corollaries of the result, they also prove the Lα R − L2 Rn ˙ p n 2 n boundedness of the Littlewood-Paley type operators μΦ,α,S and μ∗,Φ which relate to the Lusin Ω Ω,α,λ ∗ area integral and the Littlewood-Paley gλ function.1. IntroductionLet Ên n ≥ 2 be the n-dimensional Euclidean space and Ën−1 be the unit sphere in Ênequipped with the normalized Lebesgue measure dσ dσ · . For x ∈ Ên \ {0}, let x x/|x|. Before stating our theorems, we first introduce some definitions about the variablekernel Ω x, z . A function Ω x, z defined on Ên × Ên is said to be in L∞ Ên × Lq Ën−1 , q ≥ 1,if Ω x, z satisfies the following two conditions: Ω x, z , for any x, z ∈ Ên and any λ > 0; 1 Ω x, λz 1/q y, z |q dσ z Ω supr ≥0, y∈Ên Ën−1 |Ω rz < ∞. Ên ×Lq Ën−1 2 L∞ In 1955, Calderon and Zygmund 1 investigated the Lp boundedness of the singular ´integrals TΩ with variable kernel. They found that these operators connect closely with the2 Journal of Inequalities and Applicationsproblem about the second-order linear elliptic equations with variable coefficients. In 2002,Tang and Yang 2 gave Lp boundedness of the singular integrals with variable kernelsassociated to surfaces of the form {x Φ |y| y }, where y y/|y| for any y ∈ Ên \ {0} n ≥ Φ2 . That is, they considered the variable Calderon-Zygmund singular integral operator TΩ ´defined by Ω x, y Φ p·v· f x − Φ y y dy. TΩ f x 1.1 n Ên y On the other hand, as a related vector-valued singular integral with variable kernel,the Marcinkiewicz singular with rough variable kernel associated with surfaces of the form{x Φ |y| y } is considered. It is defined by ∞ 1/2 2 dt μΦ f x Φ FΩ,t x , 1.2 Ω t3 0where Ω x, y Φ f x − Φ y y dy, FΩ,t x ...

Tài liệu được xem nhiều:

Tài liệu liên quan: