Báo cáo sinh học: Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system
Số trang: 9
Loại file: pdf
Dung lượng: 180.19 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system
Nội dung trích xuất từ tài liệu:
Báo cáo sinh học: " Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system"Boundary Value Problems This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system Boundary Value Problems 2011, 2011:54 doi:10.1186/1687-2770-2011-54 Zaihong Jiang (jzhong@zjnu.cn) Jishan Fan (fanjishan@njfu.com.cn) ISSN 1687-2770 Article type Research Submission date 18 October 2011 Acceptance date 22 December 2011 Publication date 22 December 2011 Article URL http://www.boundaryvalueproblems.com/content/2011/1/54 This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). For information about publishing your research in Boundary Value Problems go to http://www.boundaryvalueproblems.com/authors/instructions/ For information about other SpringerOpen publications go to http://www.springeropen.com © 2011 Jiang and Fan ; licensee Springer.This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system Zaihong Jiang∗1 and Jishan Fan2 1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China 2 Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, People’s Republic of China ∗ Corresponding author: jzhong@zjnu.cn Email address: fanjishan@njfu.com.cn Abstract This article studies the vanishing heat conductivity limit for the 2D Cahn- Hilliard-boussinesq system in a bounded domain with non-slip boundary condi- tion. The result has been proved globally in time. 2010 MSC: 35Q30; 76D03; 76D05; 76D07. Keywords: Cahn–Hilliard–Boussinesq; inviscid limit; non-slip boundary con- dition.1 IntroductionLet Ω ⊆ R2 be a bounded, simply connected domain with smooth boundary ∂ Ω, andn is the unit outward normal vector to ∂ Ω. We consider the following Cahn-Hilliard- 1Boussinesq system in Ω × (0, ∞) [1]: ∂t u + ( u · )u + π − ∆u = µ φ + θe2 , (1.1) div u = 0, (1.2) ∂t θ + u · θ = ∆θ, (1.3) ∂t φ + u · φ = ∆µ, (1.4) −∆φ + f (φ) = µ, (1.5) ∂φ ∂µ u = 0, θ = 0 , = = 0 on ∂ Ω × (0, ∞), (1.6) ∂n ∂n (u, θ, φ)(x, 0) = (u0 , θ0 , φ0 )(x), x ∈ Ω, (1.7)where u, π, θ and φ denote unknown velocity field, pressure scalar, temperature of thefluid and the order parameter, respectively. > 0 is the heat conductivity coefficient 1and e2 := (0, 1)t . µ is a chemical potential and f (φ) := 4 (φ2 − 1)2 is the double wellpotential. When φ = 0, (1.1), (1.2) and (1.3) is the well-known Boussinesq system. In [2] . ˙0Zhou and Fan proved a regularity criterion ω = curlu ∈ L1 (0, T ; B∞,∞ ) for the 3DBoussinesq system with partial viscosity. Later, in [3] Zhou and Fan studied theCauchy problem of certain Boussinesq−α equations in n dimensions with n = 2 or ...
Nội dung trích xuất từ tài liệu:
Báo cáo sinh học: " Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system"Boundary Value Problems This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system Boundary Value Problems 2011, 2011:54 doi:10.1186/1687-2770-2011-54 Zaihong Jiang (jzhong@zjnu.cn) Jishan Fan (fanjishan@njfu.com.cn) ISSN 1687-2770 Article type Research Submission date 18 October 2011 Acceptance date 22 December 2011 Publication date 22 December 2011 Article URL http://www.boundaryvalueproblems.com/content/2011/1/54 This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). For information about publishing your research in Boundary Value Problems go to http://www.boundaryvalueproblems.com/authors/instructions/ For information about other SpringerOpen publications go to http://www.springeropen.com © 2011 Jiang and Fan ; licensee Springer.This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system Zaihong Jiang∗1 and Jishan Fan2 1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China 2 Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, People’s Republic of China ∗ Corresponding author: jzhong@zjnu.cn Email address: fanjishan@njfu.com.cn Abstract This article studies the vanishing heat conductivity limit for the 2D Cahn- Hilliard-boussinesq system in a bounded domain with non-slip boundary condi- tion. The result has been proved globally in time. 2010 MSC: 35Q30; 76D03; 76D05; 76D07. Keywords: Cahn–Hilliard–Boussinesq; inviscid limit; non-slip boundary con- dition.1 IntroductionLet Ω ⊆ R2 be a bounded, simply connected domain with smooth boundary ∂ Ω, andn is the unit outward normal vector to ∂ Ω. We consider the following Cahn-Hilliard- 1Boussinesq system in Ω × (0, ∞) [1]: ∂t u + ( u · )u + π − ∆u = µ φ + θe2 , (1.1) div u = 0, (1.2) ∂t θ + u · θ = ∆θ, (1.3) ∂t φ + u · φ = ∆µ, (1.4) −∆φ + f (φ) = µ, (1.5) ∂φ ∂µ u = 0, θ = 0 , = = 0 on ∂ Ω × (0, ∞), (1.6) ∂n ∂n (u, θ, φ)(x, 0) = (u0 , θ0 , φ0 )(x), x ∈ Ω, (1.7)where u, π, θ and φ denote unknown velocity field, pressure scalar, temperature of thefluid and the order parameter, respectively. > 0 is the heat conductivity coefficient 1and e2 := (0, 1)t . µ is a chemical potential and f (φ) := 4 (φ2 − 1)2 is the double wellpotential. When φ = 0, (1.1), (1.2) and (1.3) is the well-known Boussinesq system. In [2] . ˙0Zhou and Fan proved a regularity criterion ω = curlu ∈ L1 (0, T ; B∞,∞ ) for the 3DBoussinesq system with partial viscosity. Later, in [3] Zhou and Fan studied theCauchy problem of certain Boussinesq−α equations in n dimensions with n = 2 or ...
Tìm kiếm theo từ khóa liên quan:
báo cáo khoa học báo cáo sinh học công trình nghiên cứu về sinh học tài liệu về sinh học cách trình bày báo cáoTài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 358 0 0 -
63 trang 316 0 0
-
13 trang 265 0 0
-
Báo cáo khoa học Bước đầu tìm hiểu văn hóa ẩm thực Trà Vinh
61 trang 253 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 235 0 0 -
Tóm tắt luận án tiến sỹ Một số vấn đề tối ưu hóa và nâng cao hiệu quả trong xử lý thông tin hình ảnh
28 trang 223 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 222 0 0 -
23 trang 208 0 0
-
Đề tài nghiên cứu khoa học và công nghệ cấp trường: Hệ thống giám sát báo trộm cho xe máy
63 trang 201 0 0 -
NGHIÊN CỨU CHỌN TẠO CÁC GIỐNG LÚA CHẤT LƯỢNG CAO CHO VÙNG ĐỒNG BẰNG SÔNG CỬU LONG
9 trang 200 0 0