Báo cáo toán học: A Blowing-up Characterization of Pseudo Buchsbaum Modules
Số trang: 10
Loại file: pdf
Dung lượng: 149.45 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
(A, m) là một vòng giao hoán Noetherian địa phương và M tạo ra hữu hạn A-module. Mục đích của bài viết này là để cho một đặc tính thổi giả Buchsbaum module được định nghĩa trong [2], nói rằng M là một mô-đun Buchsbaum giả khi và chỉ khi RQ Rees mô-đun (M) là giả Buchsbaum cho tất cả các lý tưởng tham số q M/.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " A Blowing-up Characterization of Pseudo Buchsbaum Modules"Vietnam Journal of Mathematics 34:4 (2006) 449–458 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 9$67 A Blowing-up Characterization of Pseudo Buchsbaum Modules Nguyen Tu Cuong1 and Nguyen Thi Hong Loan2 1 Institute of Mathematics,18 Hoang Quoc Viet, 10307 Hanoi, Vietnam 2 Department of Mathematics, Vinh University 182 Le Duan Street, Vinh City, Vietnam Dedicated to Professor Do Long Van on the occasion of his 65th birthday Received June 22, 2005Abstract. Let (A, m) be a commutative Noetherian local ring and M a finitelygenerated A-module. The aim of this paper is to give a blow-up characterization ofpseudo Buchsbaum modules defined in [2], which says that M is a pseudo Buchsbaummodule if and only if the Rees module Rq(M ) is pseudo Buchsbaum for all parameterideals q of M . We also show that the associated graded module Gq(M ) is pseudoCohen Macaulay (resp. pseudo Buchsbaum) provided M is pseudo Cohen Macaulay(resp. pseudo Buchsbaum).2000 Mathematics Subject Classification: 13H10, 13A30.Keywords: Pseudo Cohen-Macaulay module, pseudo Buchsbaum module, Rees module,associate graded module.1. IntroductionLet A be a commutative Noetherian local ring with the maximal ideal m, M afinitely generated A-module with dim M = d > 0. Let x = (x1 , . . . , xd ) be asystem of parameters of A-module M. We consider the difference between themultiplicity and the length JM (x) = e(x; M ) − (M/QM (x)), ((xt+1 , . . . , xt+1 )M : xt . . . xt ) is a submodule of M. Itwhere QM (x) = 1 1 d d t >0should be mentioned that JM (x) gives a lot of informations on the structure of M.450 Nguyen Tu Cuong and Nguyen Thi Hong LoanFor example, if M is a Cohen–Macaulay module then QM (x) = (x1 , . . . , xd)Mby [7]. Therefore JM (x) = 0 for all system of parameters x of M . Further,we have known that (M/QM (x)) is just the length of generalized fraction (see[10]). Therefore by [10], sup JM (x) < ∞ if M is a generalized Cohen-Macaulay xmodule. In [1] we also showed that if M is a Buchsbaum module then, JM (x)takes a constant value for every system of parameters x of M. Unfortunately,the converses of all above statements are not true in general. The structureof modules M satisfying JM (x) = 0 or sup JM (x) < ∞ was studied in [5] and xsuch modules were called pseudo Cohen-Macaulay modules or pseudo generalizedCohen-Macaulay modules, respectively. In [2] we studied the structure of mod-ules M having JM (x) a constant value for all systems of parameters. We calledit pseudo Buchsbaum modules. Note that pseudo Cohen Macaulay (resp. pseudoBuchsbaum, pseudo generalized Cohen Macaulay) modules still have many niceproperties and they are relatively closed to Cohen Macaulay (resp. Buchsbaum,generalized Cohen Macaulay) modules. For a parameter ideal q of M we set Rq(M ) = ⊕ qi M T i the Rees module and i ≥0Gq(M ) = ⊕ qi M/qi+1 M the associated graded module of M with respect to q. i ≥0Let M = m ⊕ ⊕ qi T i be the unique homogeneous maximal ideal of Rq(A). Then i ≥1Rq(M ) or Gq(M ) is called a pseudo Cohen Macaulay (resp. pseudo Buchsbaum)module if and only if Rq(M )M or Gq(M )M is a pseudo Cohen Macaulay (resp.pseudo Buchsbaum) module. The purpose of this paper is to prove the followingresult.Theorem 1. Let A be a commutative Noetherian local ring and M a finitelygenerated A-module. Then the following statements are true. (i) M is a pseudo Buchsbaum module if and only if Rq (M ) is a pseudo Buchs- baum module for all parameter ideals q of M.(ii) Let M be a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) module. Then Gq (M ) is a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) mod- ule for all parameter ideals q of M. It should be noted that an analogous result of the first statement in theabove theorem for Buchsbaum modules was only proved under the assumptionthat depth M > 0 (see [11, Theorem 3.3, Chap. IV]). The paper is divided into 4 sections. In Sec. 2, we outline some propertiesof pseudo Cohen Macaulay (resp. pseudo Buchsbaum) modules over local ringwhich will be needed later. The proof of Theorem 1 ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " A Blowing-up Characterization of Pseudo Buchsbaum Modules"Vietnam Journal of Mathematics 34:4 (2006) 449–458 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 9$67 A Blowing-up Characterization of Pseudo Buchsbaum Modules Nguyen Tu Cuong1 and Nguyen Thi Hong Loan2 1 Institute of Mathematics,18 Hoang Quoc Viet, 10307 Hanoi, Vietnam 2 Department of Mathematics, Vinh University 182 Le Duan Street, Vinh City, Vietnam Dedicated to Professor Do Long Van on the occasion of his 65th birthday Received June 22, 2005Abstract. Let (A, m) be a commutative Noetherian local ring and M a finitelygenerated A-module. The aim of this paper is to give a blow-up characterization ofpseudo Buchsbaum modules defined in [2], which says that M is a pseudo Buchsbaummodule if and only if the Rees module Rq(M ) is pseudo Buchsbaum for all parameterideals q of M . We also show that the associated graded module Gq(M ) is pseudoCohen Macaulay (resp. pseudo Buchsbaum) provided M is pseudo Cohen Macaulay(resp. pseudo Buchsbaum).2000 Mathematics Subject Classification: 13H10, 13A30.Keywords: Pseudo Cohen-Macaulay module, pseudo Buchsbaum module, Rees module,associate graded module.1. IntroductionLet A be a commutative Noetherian local ring with the maximal ideal m, M afinitely generated A-module with dim M = d > 0. Let x = (x1 , . . . , xd ) be asystem of parameters of A-module M. We consider the difference between themultiplicity and the length JM (x) = e(x; M ) − (M/QM (x)), ((xt+1 , . . . , xt+1 )M : xt . . . xt ) is a submodule of M. Itwhere QM (x) = 1 1 d d t >0should be mentioned that JM (x) gives a lot of informations on the structure of M.450 Nguyen Tu Cuong and Nguyen Thi Hong LoanFor example, if M is a Cohen–Macaulay module then QM (x) = (x1 , . . . , xd)Mby [7]. Therefore JM (x) = 0 for all system of parameters x of M . Further,we have known that (M/QM (x)) is just the length of generalized fraction (see[10]). Therefore by [10], sup JM (x) < ∞ if M is a generalized Cohen-Macaulay xmodule. In [1] we also showed that if M is a Buchsbaum module then, JM (x)takes a constant value for every system of parameters x of M. Unfortunately,the converses of all above statements are not true in general. The structureof modules M satisfying JM (x) = 0 or sup JM (x) < ∞ was studied in [5] and xsuch modules were called pseudo Cohen-Macaulay modules or pseudo generalizedCohen-Macaulay modules, respectively. In [2] we studied the structure of mod-ules M having JM (x) a constant value for all systems of parameters. We calledit pseudo Buchsbaum modules. Note that pseudo Cohen Macaulay (resp. pseudoBuchsbaum, pseudo generalized Cohen Macaulay) modules still have many niceproperties and they are relatively closed to Cohen Macaulay (resp. Buchsbaum,generalized Cohen Macaulay) modules. For a parameter ideal q of M we set Rq(M ) = ⊕ qi M T i the Rees module and i ≥0Gq(M ) = ⊕ qi M/qi+1 M the associated graded module of M with respect to q. i ≥0Let M = m ⊕ ⊕ qi T i be the unique homogeneous maximal ideal of Rq(A). Then i ≥1Rq(M ) or Gq(M ) is called a pseudo Cohen Macaulay (resp. pseudo Buchsbaum)module if and only if Rq(M )M or Gq(M )M is a pseudo Cohen Macaulay (resp.pseudo Buchsbaum) module. The purpose of this paper is to prove the followingresult.Theorem 1. Let A be a commutative Noetherian local ring and M a finitelygenerated A-module. Then the following statements are true. (i) M is a pseudo Buchsbaum module if and only if Rq (M ) is a pseudo Buchs- baum module for all parameter ideals q of M.(ii) Let M be a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) module. Then Gq (M ) is a pseudo Cohen Macaulay (resp. pseudo Buchsbaum) mod- ule for all parameter ideals q of M. It should be noted that an analogous result of the first statement in theabove theorem for Buchsbaum modules was only proved under the assumptionthat depth M > 0 (see [11, Theorem 3.3, Chap. IV]). The paper is divided into 4 sections. In Sec. 2, we outline some propertiesof pseudo Cohen Macaulay (resp. pseudo Buchsbaum) modules over local ringwhich will be needed later. The proof of Theorem 1 ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcGợi ý tài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 352 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 229 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 218 0 0 -
23 trang 204 0 0
-
40 trang 200 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 179 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 172 0 0 -
8 trang 170 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 164 0 0 -
8 trang 157 0 0