Báo cáo toán học: A Formula About Tree
Số trang: 6
Loại file: pdf
Dung lượng: 90.79 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
d (q) là mức độ của các đỉnh q, và l (v, q) là khoảng cách giữa v và q trong G. Kết quả này cho phép chúng tôi lấy được một công thức concering khoảng cách trung bình cho một số cây đặc biệt.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "A Formula About Tree" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:3 (2005) 343–348 RI 0$7+(0$7,&6 9$67 A Formula About Tree Ahmed Ayache1 , Walied H. Sharif2 , and Vu Dinh Hoa3 1 University of Bahraib, Faculty of Science, Department of Mathematics, P. O. Box 32038, Isa Town, Kingdom of Bahrain 2 Department of Mathematics, College of Science, Qatar University, Doha, P. O. Box 2713, Qatar 3 Hanoi University of Education, Faculty of Information Technology, 136 Xuan Thuy street, Hanoi, Vietnam Received September 23, 2004 Revised April 12, 2005Abstract. Let G be a tree. It is proved that for any vertex v of G |V | + [d(q ) − 2]l(v, q ) = 1 q ∈Vin which d(q ) is the degree of the vertex q , and l (v, q ) is the distance between v andq in G. This result enable us to derive a formula concering the average distance forsome particular trees.1. IntroductionWe begin by recalling some definitions and notations. A tree G is a connectedgraph that contains no simple cycles [1]. The degree of a vertex v of G, denotedby d(v ), is the number of edges incident with v . The distance between twovertices v anh q , denoted l(v, q ), is the number of edges from v to q on theunique (v, q )-path in the tree G. The transmission of a vertex v of G, is the value σ (v ) = u∈V l(v, u). Thetransmission of G is the value σ (G) = v∈V σ (v ) [3]. The Wiener index of a connected graph G, denoted by W (G), is defined byW (G) = u,v∈V l(v, u), in which the summation is taken over all unorderedpairs {u, v } of distinct vertices of G. It is evident that W (G) = 1 σ (G). Finally, 2344 Ahmed Ayache, Walied H. Sharif, and Vu Dinh Hoathe average distance of G, denoted by μ(G) = W (G)/ p , where p is order of G 2[2]. The purpose of this paper is to establish the following formula |V | + [d(q ) − 2]l(v, q ) = 1 q ∈Vfor any v ∈ V . Consequently, this enables us to evaluate the average distance ofsome particular trees.2. The FormulaTheorem 2.1. Let G be a tree with finite vertex set V . For every vertex v ofG, we have |V | + (d(q ) − 2).l(v, q ) = 1. q ∈VProof. We use induction on D(v ) = maxq∈V l(v, q ). If D(v ) = 1 then G is a starand we have |V | + (d(q ) − 2)l(v, q ) = |V | + (1 − 2)l(v, q ) = 1. q ∈V q ∈VNow suppose that |V | + q∈V (d(q ) − 2)l(v, q ) = 1 for all trees G and for vertexv ∈ V (G) such that D(v ) = k ≥ 1. We consider a tree G with a vertex v ∈ V (G)such that D(v ) = k + 1. Let X be the set of the vertices q with l(v, q ) = k + 1and Y be the set of neighbors of X . It is easy to see that l(v, q ) = k for q ∈ Yand that q∈Y dx = |X |, where dx (q ) is the number of the neighbors of q in X .For the tree G = G − X we have by induction hypothesis 1 = |V − X | + (dG (q ) − 2)l(q, v ) q ∈ V −X = |V | − |X | + (dG (q ) − 2)l(q, v ) + (dG (q ) − 2)l(q, v ) q ∈ V −X −Y q ∈Y = |V |+ dX (q )l(q, v )–|X | (dG (q )–2)l(q, v )+ (dG (q )–2)l(q, v )– q ∈ V −X −Y q ∈Y q ∈Y = |V | + (dG (q ) − 2)l(q, v ) − |X |l(q, v ) − |X | q ∈ V −X = |V | + (dG (q ) − 2)l(q, v ), q ∈Vsince dG (q ) = 1 for all q ∈ X . Thus, Theorem 2.1 holds for any finite tree G.3. The Average DistanceThe previous formula may be used to find the average distance in some specialtrees. Let us start by some preliminary results.A Formula About Tree 345Proposition 3.1. If G is a tree with order p > 1, then 1 1 ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "A Formula About Tree" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:3 (2005) 343–348 RI 0$7+(0$7,&6 9$67 A Formula About Tree Ahmed Ayache1 , Walied H. Sharif2 , and Vu Dinh Hoa3 1 University of Bahraib, Faculty of Science, Department of Mathematics, P. O. Box 32038, Isa Town, Kingdom of Bahrain 2 Department of Mathematics, College of Science, Qatar University, Doha, P. O. Box 2713, Qatar 3 Hanoi University of Education, Faculty of Information Technology, 136 Xuan Thuy street, Hanoi, Vietnam Received September 23, 2004 Revised April 12, 2005Abstract. Let G be a tree. It is proved that for any vertex v of G |V | + [d(q ) − 2]l(v, q ) = 1 q ∈Vin which d(q ) is the degree of the vertex q , and l (v, q ) is the distance between v andq in G. This result enable us to derive a formula concering the average distance forsome particular trees.1. IntroductionWe begin by recalling some definitions and notations. A tree G is a connectedgraph that contains no simple cycles [1]. The degree of a vertex v of G, denotedby d(v ), is the number of edges incident with v . The distance between twovertices v anh q , denoted l(v, q ), is the number of edges from v to q on theunique (v, q )-path in the tree G. The transmission of a vertex v of G, is the value σ (v ) = u∈V l(v, u). Thetransmission of G is the value σ (G) = v∈V σ (v ) [3]. The Wiener index of a connected graph G, denoted by W (G), is defined byW (G) = u,v∈V l(v, u), in which the summation is taken over all unorderedpairs {u, v } of distinct vertices of G. It is evident that W (G) = 1 σ (G). Finally, 2344 Ahmed Ayache, Walied H. Sharif, and Vu Dinh Hoathe average distance of G, denoted by μ(G) = W (G)/ p , where p is order of G 2[2]. The purpose of this paper is to establish the following formula |V | + [d(q ) − 2]l(v, q ) = 1 q ∈Vfor any v ∈ V . Consequently, this enables us to evaluate the average distance ofsome particular trees.2. The FormulaTheorem 2.1. Let G be a tree with finite vertex set V . For every vertex v ofG, we have |V | + (d(q ) − 2).l(v, q ) = 1. q ∈VProof. We use induction on D(v ) = maxq∈V l(v, q ). If D(v ) = 1 then G is a starand we have |V | + (d(q ) − 2)l(v, q ) = |V | + (1 − 2)l(v, q ) = 1. q ∈V q ∈VNow suppose that |V | + q∈V (d(q ) − 2)l(v, q ) = 1 for all trees G and for vertexv ∈ V (G) such that D(v ) = k ≥ 1. We consider a tree G with a vertex v ∈ V (G)such that D(v ) = k + 1. Let X be the set of the vertices q with l(v, q ) = k + 1and Y be the set of neighbors of X . It is easy to see that l(v, q ) = k for q ∈ Yand that q∈Y dx = |X |, where dx (q ) is the number of the neighbors of q in X .For the tree G = G − X we have by induction hypothesis 1 = |V − X | + (dG (q ) − 2)l(q, v ) q ∈ V −X = |V | − |X | + (dG (q ) − 2)l(q, v ) + (dG (q ) − 2)l(q, v ) q ∈ V −X −Y q ∈Y = |V |+ dX (q )l(q, v )–|X | (dG (q )–2)l(q, v )+ (dG (q )–2)l(q, v )– q ∈ V −X −Y q ∈Y q ∈Y = |V | + (dG (q ) − 2)l(q, v ) − |X |l(q, v ) − |X | q ∈ V −X = |V | + (dG (q ) − 2)l(q, v ), q ∈Vsince dG (q ) = 1 for all q ∈ X . Thus, Theorem 2.1 holds for any finite tree G.3. The Average DistanceThe previous formula may be used to find the average distance in some specialtrees. Let us start by some preliminary results.A Formula About Tree 345Proposition 3.1. If G is a tree with order p > 1, then 1 1 ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcTài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 361 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 247 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 223 0 0 -
23 trang 216 0 0
-
40 trang 201 0 0
-
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 192 0 0 -
8 trang 190 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 187 0 0 -
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 178 0 0 -
Chuyên đề mạng máy tính: Tìm hiểu và Cài đặt Group Policy trên windows sever 2008
18 trang 167 0 0