Báo cáo toán học: A Stochastic EOQ Policy of Cold-Drink-For a Retailer
Số trang: 6
Loại file: pdf
Dung lượng: 93.81 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài viết này mở rộng một mô hình EOQ (số lượng đặt hàng kinh tế) ngẫu nhiêncho cả phân phối rời rạc và liên tục của nhu cầu nước uống lạnh. Một đặc điểm chung của các chính sách tồn kho tối ưu được phát triển phân tích.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " A Stochastic EOQ Policy of Cold-Drink-For a Retailer" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:4 (2005) 437–442 RI 0$7+(0$7,&6 9$67 A Stochastic EOQ Policy of Cold-Drink-For a Retailer Shib Sankar Sana1 and Kripasindhu Chaudhuri2 1 Department of Math., Bhangar Mahavidyalaya University of Calcutta Viil. +P.O.+ P. S.-Bhangar, Dist.-24PGS(South) West Bengal, India 2 Department of Mathematics Jadavpur University, Calcutta-700032 West Bengal, India Received June 22, 2005Abstract. This paper extends a stochastic EOQ (economic order quantity) modelboth for discrete and continuous distribution of demands of cold-drink. A generalcharacterization of the optimal inventory policy is developed analytically. An optimalsolution is obtained with proper numerical illustration.1. IntroductionA well-known stochastic extension of the classical EOQ (economic order quan-tity) model bases the re-order decision or the stock level (see Hadley and Whitin[4], Wagner [13]). Models of storage systems with stochastic supply and demandhave been widely analysed in the models of Faddy [3], Harrison and Resnick [5],Miller [8], Moran [9], Pliska [10], Puterman [11], Meyer, Rothkopf and Smith [7],Teisberg [12], Chao and Manne [1], Hogan [6] and Devarangan and Weiner [2]. In this paper, an optimal inventory policy is characterised by conditions: (a)demand rate is stochastic that depends upon temperature as random variable;(b) supply rate is instanteneously infinite and order is placed in the begining ofthe cycle; (c) inventory cost is a linear function of temperature.2. Fundamental Assumptions and Notations 1. Model is developed on single-item products.438 Shib Sankar Sana and Kripasindhu Chaudhuri 2. Lead time is negligible. 3. Demand is uniform over the period and a function of temperature that follows a probability distributions. 4. Production rate is instanteneously infinite. 5. Reorder-time is fixed and known. Thus the set-up cost is not included in the total cost. Let the holding cost per item per unit time be Ch , the shortage cost per itemper unit time be Cs , the inventory level be Q of item, r is the demand over theperiod, T is the cycle length.3. The ModelIn this model, we consider demand rate of the product (r) and inventory holdingcost per item per unit time (Ch ) are: r = aτand Ch = C1 + C2 (τ − μ).where, dr (≥ 0) = marginal response of cold-drink consumption to a change ina= dττ (temperature)C1 = opportunity cost of money tied up in inventory.C2 = rate of change of inventory cost with respect to temperature.μ = optimum temperature for a buyer, according to their demand. Generally μis 5◦ C . Now, the governing equations are as follows:Case 1. When Shortage does not occur dQ r =− , 0≤t≤T (1) dt Twith Q(0) = Q0 .From Eq. (1), we have r Q(t) = Q0 − t, 0 ≤ t ≤ T. T rHere Q(T ) ≥ 0 ⇒ Q0 − T ≥ 0 ⇒ Q0 ≥ r. Therefore, the inventory is T T r r (Q0 − t)dt = (Q0 − )T, for r ≤ Q0 . T 2 0Case 2. When Shortage occurs: dQ r = − , 0 ≤ t ≤ t1 (2) dt Twith Q(0) = Q0 , and Q(t1 ) = 0,A Stochastic EOQ Policy of Cold-Drink -For a Retailer 439and dQ r = − , t1 ≤ t ≤ T (3) dt Twith Q(T ) < 0.From Eq. (2), we have r Q(t) = Q0 − t, 0 ≤ t ≤ t1 . T Q0 TNow Q(t1 ) = 0 ⇒ t1 = . The Eq. (3) gives us r ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " A Stochastic EOQ Policy of Cold-Drink-For a Retailer" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:4 (2005) 437–442 RI 0$7+(0$7,&6 9$67 A Stochastic EOQ Policy of Cold-Drink-For a Retailer Shib Sankar Sana1 and Kripasindhu Chaudhuri2 1 Department of Math., Bhangar Mahavidyalaya University of Calcutta Viil. +P.O.+ P. S.-Bhangar, Dist.-24PGS(South) West Bengal, India 2 Department of Mathematics Jadavpur University, Calcutta-700032 West Bengal, India Received June 22, 2005Abstract. This paper extends a stochastic EOQ (economic order quantity) modelboth for discrete and continuous distribution of demands of cold-drink. A generalcharacterization of the optimal inventory policy is developed analytically. An optimalsolution is obtained with proper numerical illustration.1. IntroductionA well-known stochastic extension of the classical EOQ (economic order quan-tity) model bases the re-order decision or the stock level (see Hadley and Whitin[4], Wagner [13]). Models of storage systems with stochastic supply and demandhave been widely analysed in the models of Faddy [3], Harrison and Resnick [5],Miller [8], Moran [9], Pliska [10], Puterman [11], Meyer, Rothkopf and Smith [7],Teisberg [12], Chao and Manne [1], Hogan [6] and Devarangan and Weiner [2]. In this paper, an optimal inventory policy is characterised by conditions: (a)demand rate is stochastic that depends upon temperature as random variable;(b) supply rate is instanteneously infinite and order is placed in the begining ofthe cycle; (c) inventory cost is a linear function of temperature.2. Fundamental Assumptions and Notations 1. Model is developed on single-item products.438 Shib Sankar Sana and Kripasindhu Chaudhuri 2. Lead time is negligible. 3. Demand is uniform over the period and a function of temperature that follows a probability distributions. 4. Production rate is instanteneously infinite. 5. Reorder-time is fixed and known. Thus the set-up cost is not included in the total cost. Let the holding cost per item per unit time be Ch , the shortage cost per itemper unit time be Cs , the inventory level be Q of item, r is the demand over theperiod, T is the cycle length.3. The ModelIn this model, we consider demand rate of the product (r) and inventory holdingcost per item per unit time (Ch ) are: r = aτand Ch = C1 + C2 (τ − μ).where, dr (≥ 0) = marginal response of cold-drink consumption to a change ina= dττ (temperature)C1 = opportunity cost of money tied up in inventory.C2 = rate of change of inventory cost with respect to temperature.μ = optimum temperature for a buyer, according to their demand. Generally μis 5◦ C . Now, the governing equations are as follows:Case 1. When Shortage does not occur dQ r =− , 0≤t≤T (1) dt Twith Q(0) = Q0 .From Eq. (1), we have r Q(t) = Q0 − t, 0 ≤ t ≤ T. T rHere Q(T ) ≥ 0 ⇒ Q0 − T ≥ 0 ⇒ Q0 ≥ r. Therefore, the inventory is T T r r (Q0 − t)dt = (Q0 − )T, for r ≤ Q0 . T 2 0Case 2. When Shortage occurs: dQ r = − , 0 ≤ t ≤ t1 (2) dt Twith Q(0) = Q0 , and Q(t1 ) = 0,A Stochastic EOQ Policy of Cold-Drink -For a Retailer 439and dQ r = − , t1 ≤ t ≤ T (3) dt Twith Q(T ) < 0.From Eq. (2), we have r Q(t) = Q0 − t, 0 ≤ t ≤ t1 . T Q0 TNow Q(t1 ) = 0 ⇒ t1 = . The Eq. (3) gives us r ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcGợi ý tài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 352 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 229 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 218 0 0 -
23 trang 204 0 0
-
40 trang 200 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 179 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 172 0 0 -
8 trang 170 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 164 0 0 -
8 trang 157 0 0