![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Báo cáo toán học: On Hopfian and Co-Hopfian Modules
Số trang: 8
Loại file: pdf
Dung lượng: 127.35 KB
Lượt xem: 3
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
M R-mô-đun được cho là Hopfian (tương ứng Co-Hopfian) trong trường hợp bất kỳ surjective (tương ứng xạ) R-đồng cấu tự động là một đẳng cấu. Trong bài báo này chúng ta nghiên cứu điều kiện đầy đủ và cần thiết của Hopfian và các mô-đun Co-Hopfian. Đặc biệt, chúng tôi cho thấy các yếu Co-mô-đun thường xuyên Hopfian RR Hopfian, và R-mô-đun trái M là Co-Hopfian nếu và chỉ nếu trái R [x] / (xn +1) mô-đun M [x] / (xn +1) là Co-Hopfian, trong đó n là một số nguyên dương....
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "On Hopfian and Co-Hopfian Modules" Vietnam Journal of Mathematics 35:1 (2007) 73–80 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 On Hopfian and Co-Hopfian Modules* Yang Gang1 and Liu Zhong-kui2 1 School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China 2 Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China Received March 15, 2006 Revised May 15, 2006Abstract. A R-module M is said to be Hopfian(respectively Co-Hopfian) in case anysurjective(respectively injective) R-homomorphism is automatically an isomorphism.In this paper we study sufficient and necessary conditions of Hopfian and Co-Hopfianmodules. In particular, we show that the weakly Co-Hopfian regular module R R isHopfian, and the left R-module M is Co-Hopfian if and only if the left R[x]/(xn+1 )-module M [x]/(xn+1 ) is Co-Hopfian, where n is a positive integer.2000 Mathematics Subject Classification:Keywords: Hopfian modules, Co-Hopfian modules, weakly Co-Hopfian modules, gen-eralized Hopfian modules.1. IntroductionThroughout this paper, unless stated otherwise, ring R is associative and has anidentity, M is a left R-module. An essential submodule K of M is denoted byK ≤e M , and a superfluous submodule L of M is denoted by L M. In 1986, Hiremath introduced the concept of the Hopfian module [1]. Lately,the dual of Hopfian, i.e., the concept of Co-Hopfian was given, and such modules∗ This work was supported by National Natural Science Foundation of China (10171082),TRAPOYT and NWNU-KJCXGC212.74 Yang Gang and Liu Zhong-kuihave been investigated by many authors, e.g. [1-8]. In [9], it is proved that if R Ris Artinian then R R is Noetherian. In the second section, we introduce the con-cept of generalized Artinian and generalized Noetherian, which are Co-Hopfianand Hopfian, respectively, and prove that if R R is generalized Artinian then R Ris generalized Noetherian. Varadarajan [2] showed that if R R is Co-Hopfian thenR R is Hopfian, and we considerably strengthen this result by proving that R Ris Hopfian under the condition of weak Co-Hopficity. So we get the followingrelationships for the regular module R R: ⇒ ⇒ Co−Hopf ian ⇒ Artinian generalized Artinian weakly Co−Hopf ian ⇓ ⇓ ⇓ ⇓ ⇒ ⇒ ⇒ N oetherian generalized N oetherian Hopf ian generalized Hopf ianVaradarajan [2, 3] showed that the left R-module M is Hopfian if and only ifthe left R[x]-module M [x] is Hopfian if and only if the left R[x]/(xn+1)-moduleM [x]/(xn+1) is Hopfian, lately, Liu extended the result to the module of gen-eralized inverse polynomials [8]. But for any 0 = M , the R[x]-module M [x] isnever Co-Hopfian. In fact, the map ”multiplication by x” is an injective non-surjective map, where x is a commuting indeterminate over R. In the thirdpart of the paper, the Co-Hopficity of the polynomial module M [x]/(xn+1) isconsidered. We showed that the R-module M is Co-Hopfian if and only if theR[x]/(xn+1)-module M [x]/(xn+1) is Co-Hopfian, where n is any positive integer.The following are several conceptions we will use in this paper.Definition 1.1. [2] Let M be a left R-module,(1) M is called Hopfian, if any surjective R-homomorphism f : M −→ M is an isomorphism.(2) M is called Co-Hopfian, if any injective R-homomorphism f : M −→ M is an isomorphism. Definition 1.2. [12] A left R-module M is said to be weakly Co-Hopfian if every injective R-endomorphism f : M → M is essential, i.e., f (M ) ≤e M . Definition 1.3. ([13]) A left R-module M is said to be generalized Hopfian if every surjective R-endomorphism f of M is superfluous, i.e., Ker(f ) M. 2. Hopfian and Co-Hopfian Modules Definition 2.1. Let M be a left R-module,(1) M is called generalized Noetherian, if for any R-homomorphism f : M −→ M , there exists n ≥ 1 such that Ker(f n ) = Ker(f n+i ) for i = 1, 2, · · · .(2) M is called generalized Artinian, if for any R-homomorphism f : M −→ M , there exists n ≥ 1 such that Im(f n ) = Im(f n+i ) for i = 1, 2, · · · . Obviously, any Noetherian (resp. Artinian) module is generalized Notherian(resp. Artinian), but the converses are not true.On Hopfian and Co-Hopfian Modules 75Example 2.1. The Z -module M = p∈P Zp is both generalized Noetherian andgeneralized Artinian, but it is neither Noetherian nor Artinian, where P is theset of all primes.Proof. Using the fact that HomZ (Zp , Zq ) = 0 if p and q are distinct primeswe see that any Z ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "On Hopfian and Co-Hopfian Modules" Vietnam Journal of Mathematics 35:1 (2007) 73–80 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 On Hopfian and Co-Hopfian Modules* Yang Gang1 and Liu Zhong-kui2 1 School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China 2 Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China Received March 15, 2006 Revised May 15, 2006Abstract. A R-module M is said to be Hopfian(respectively Co-Hopfian) in case anysurjective(respectively injective) R-homomorphism is automatically an isomorphism.In this paper we study sufficient and necessary conditions of Hopfian and Co-Hopfianmodules. In particular, we show that the weakly Co-Hopfian regular module R R isHopfian, and the left R-module M is Co-Hopfian if and only if the left R[x]/(xn+1 )-module M [x]/(xn+1 ) is Co-Hopfian, where n is a positive integer.2000 Mathematics Subject Classification:Keywords: Hopfian modules, Co-Hopfian modules, weakly Co-Hopfian modules, gen-eralized Hopfian modules.1. IntroductionThroughout this paper, unless stated otherwise, ring R is associative and has anidentity, M is a left R-module. An essential submodule K of M is denoted byK ≤e M , and a superfluous submodule L of M is denoted by L M. In 1986, Hiremath introduced the concept of the Hopfian module [1]. Lately,the dual of Hopfian, i.e., the concept of Co-Hopfian was given, and such modules∗ This work was supported by National Natural Science Foundation of China (10171082),TRAPOYT and NWNU-KJCXGC212.74 Yang Gang and Liu Zhong-kuihave been investigated by many authors, e.g. [1-8]. In [9], it is proved that if R Ris Artinian then R R is Noetherian. In the second section, we introduce the con-cept of generalized Artinian and generalized Noetherian, which are Co-Hopfianand Hopfian, respectively, and prove that if R R is generalized Artinian then R Ris generalized Noetherian. Varadarajan [2] showed that if R R is Co-Hopfian thenR R is Hopfian, and we considerably strengthen this result by proving that R Ris Hopfian under the condition of weak Co-Hopficity. So we get the followingrelationships for the regular module R R: ⇒ ⇒ Co−Hopf ian ⇒ Artinian generalized Artinian weakly Co−Hopf ian ⇓ ⇓ ⇓ ⇓ ⇒ ⇒ ⇒ N oetherian generalized N oetherian Hopf ian generalized Hopf ianVaradarajan [2, 3] showed that the left R-module M is Hopfian if and only ifthe left R[x]-module M [x] is Hopfian if and only if the left R[x]/(xn+1)-moduleM [x]/(xn+1) is Hopfian, lately, Liu extended the result to the module of gen-eralized inverse polynomials [8]. But for any 0 = M , the R[x]-module M [x] isnever Co-Hopfian. In fact, the map ”multiplication by x” is an injective non-surjective map, where x is a commuting indeterminate over R. In the thirdpart of the paper, the Co-Hopficity of the polynomial module M [x]/(xn+1) isconsidered. We showed that the R-module M is Co-Hopfian if and only if theR[x]/(xn+1)-module M [x]/(xn+1) is Co-Hopfian, where n is any positive integer.The following are several conceptions we will use in this paper.Definition 1.1. [2] Let M be a left R-module,(1) M is called Hopfian, if any surjective R-homomorphism f : M −→ M is an isomorphism.(2) M is called Co-Hopfian, if any injective R-homomorphism f : M −→ M is an isomorphism. Definition 1.2. [12] A left R-module M is said to be weakly Co-Hopfian if every injective R-endomorphism f : M → M is essential, i.e., f (M ) ≤e M . Definition 1.3. ([13]) A left R-module M is said to be generalized Hopfian if every surjective R-endomorphism f of M is superfluous, i.e., Ker(f ) M. 2. Hopfian and Co-Hopfian Modules Definition 2.1. Let M be a left R-module,(1) M is called generalized Noetherian, if for any R-homomorphism f : M −→ M , there exists n ≥ 1 such that Ker(f n ) = Ker(f n+i ) for i = 1, 2, · · · .(2) M is called generalized Artinian, if for any R-homomorphism f : M −→ M , there exists n ≥ 1 such that Im(f n ) = Im(f n+i ) for i = 1, 2, · · · . Obviously, any Noetherian (resp. Artinian) module is generalized Notherian(resp. Artinian), but the converses are not true.On Hopfian and Co-Hopfian Modules 75Example 2.1. The Z -module M = p∈P Zp is both generalized Noetherian andgeneralized Artinian, but it is neither Noetherian nor Artinian, where P is theset of all primes.Proof. Using the fact that HomZ (Zp , Zq ) = 0 if p and q are distinct primeswe see that any Z ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcTài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 361 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 247 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 223 0 0 -
23 trang 216 0 0
-
40 trang 201 0 0
-
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 192 0 0 -
8 trang 190 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 187 0 0 -
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 178 0 0 -
Chuyên đề mạng máy tính: Tìm hiểu và Cài đặt Group Policy trên windows sever 2008
18 trang 167 0 0