Danh mục

Báo cáo toán học: On the Hyperbolicity of Some Systems of Nonlinear

Số trang: 20      Loại file: pdf      Dung lượng: 192.73 KB      Lượt xem: 7      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: 10,000 VND Tải xuống file đầy đủ (20 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong bài báo này, chúng ta nghiên cứu hyperbolicity của một số hệ thống bình thường của firstorder phi tuyến tính phương trình vi phân từng phần, mà một số MongeAmp đa chiều `lại phương trình đã được giảm xuống trong [8].
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "On the Hyperbolicity of Some Systems of Nonlinear "Vietnam Journal of Mathematics 34:1 (2006) 109–128 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 ‹ 9$67 On the Hyperbolicity of Some Systems of Nonlinear First-Order Partial Differential Equations* Ha Tien Ngoan and Nguyen Thi Nga Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam Received July 6, 2005 Revised September 16, 2005Abstract. In this paper we study the hyperbolicity of some normal systems of first-order nonlinear partial differential equations, to which some multidimensional Monge-Amp`re equations have been reduced in [8]. We prove that when the dimension n 5 eall these systems are weakly hyperbolic.1. IntroductionWe consider the following normal system of 2n + 1 first-order nonlinear partialdifferential equations with respect to 2n +1 unknown functions X (α), Z (α), P (α) ⎧ ⎪ ∂Xi n−1 ∂Xi ⎪ =− + gi (α), i = 1, 2, . . . , n, ⎪ ∂α ⎪ ∂αk ⎪ n ⎪ k=1 ⎪ ⎨ ∂Z n−1 n ∂Z =− g (α)P (α), + (1.1) ∂αk ⎪ ⎪ ∂αn k=1 =1 ⎪ ⎪ ⎪ ∂P ⎪ n−1 n ⎪ i ⎩ ∂Pi =− − ai (X (α), Z (α), P (α))g (α), i = 1, 2, . . . , n, ∂αk ∂αn k=1 =1where α ≡ (α1 , α2 , . . . , αn ) are independent variables, X (α) ≡ X1 (α), X2 (α), . . . ,∗ Thiswork was supported in part by the National Basic Research Program in Natural Science,Vietnam.110 Ha Tien Ngoan and Nguyen Thi NgaXn (α) , P (α) ≡ P1 (α), P2 (α), . . . , , Pn (α) and aij (X, Z, P ) are given smoothfunctions defined in R2n+1 , g (α) = (g1 (α), g2 (α), . . . , gn (α))T = v1 (α) × v2 (α) × · · · × vn−1 (α) ∈ Rn , (1.2) ∂P ∂X vj (α) = A(X (α), Z (α), P (α)) + ∂αj ∂αj = (vj 1 (α), vj 2 (α), . . . , vjn (α)) ∈ Rn , j = 1, 2, . . . , n − 1. (1.3)where A(X, Z, P ) ≡ [aij (X, Z, P )]n×n , aij (X, Z, P ) are the same as in (1.1), ∂X ∂X1 ∂X2 ∂Xn ) ∈ Rn , j = 1, 2, . . . , n. , ,..., =( ∂αj ∂αj ∂αj ∂αj ∂P ∂ P1 ∂P2 ∂Pn ∈ R n , j = 1, 2, . . . , n , ,..., = ∂αj ∂αj ∂αj ∂αj e1 e2 ... en−1 en v11 v12 ... v1,n−1 v1,n v21 v22 ... v2,n−1 v2,n ∈ Rn , v1 × v2 × · · · × vn−1 = (1.4) . . . . .. . . . . . . . . . vn−1,1 vn−2,2 ... vn−1,n vn−1,ne1 , e2 , . . . , en are unit column-vectors on coordinate axes Ox1 , Ox2 , . . . , Oxn , re-spectively. We note from (1.4) that gi (α) will be determined in (2.7) by a determinantof order (n-1), whose elements vjk by (2.8), (2.1) and (2.2) are homogenouspolynomials of degree 1 with respect to the same derivatives ∂X (k ) , ∂P (k ) , k = α α ∂α ∂α1, 2, . . . , n − 1. So all gi (α) are homogenous polynomials of degree (n − 1) withrespect to the derivatives ∂X (k ) , ∂P (k ) , k = 1, 2, . . . , n − 1 with coefficients de- α α ∂α ∂αpending on aij (X (α), Z (α), P (α)). Therefore the system (1.1) is normal, becauseall derivatives of the unknowns X, Z, P with respect to the αn are expressed interms of their derivatives with respect to the rest variables α1 , α2 , ..., αn−1 . In [1 - 7] the classical hyperbolic Monge-Amp`re equations (n = 2) has been estudied by reducing them to some first-order quasilinear hyperbolic systems (1.1)with 5 equations and 5 unknowns. The Cauchy problem for some hyperbolic orweakly hyperbolic systems had been studied in [11 - 12]. In [8] we have reduced the following multidimensional Monge-Amp`re equa- etion det [zxi xj + aij (x, z, p)]n×n = 0, (1.5)to the system (1.1), where x = (x1 , x2 , . . . , xn ) ∈ Rn , z = z (x) is an unknownfunction, p = (p1 , p2 , . . . , pn ) = (zx1 , zx2 , . . . , zxn ). The functions aij (x, z, p) arethe same ones as in (1.1). We have shown in [8] that a solut ...

Tài liệu được xem nhiều:

Tài liệu liên quan: