Báo cáo toán học: On the Hyperbolicity of Some Systems of Nonlinear
Số trang: 20
Loại file: pdf
Dung lượng: 192.73 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Trong bài báo này, chúng ta nghiên cứu hyperbolicity của một số hệ thống bình thường của firstorder phi tuyến tính phương trình vi phân từng phần, mà một số MongeAmp đa chiều `lại phương trình đã được giảm xuống trong [8].
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "On the Hyperbolicity of Some Systems of Nonlinear "Vietnam Journal of Mathematics 34:1 (2006) 109–128 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 9$67 On the Hyperbolicity of Some Systems of Nonlinear First-Order Partial Differential Equations* Ha Tien Ngoan and Nguyen Thi Nga Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam Received July 6, 2005 Revised September 16, 2005Abstract. In this paper we study the hyperbolicity of some normal systems of first-order nonlinear partial differential equations, to which some multidimensional Monge-Amp`re equations have been reduced in [8]. We prove that when the dimension n 5 eall these systems are weakly hyperbolic.1. IntroductionWe consider the following normal system of 2n + 1 first-order nonlinear partialdifferential equations with respect to 2n +1 unknown functions X (α), Z (α), P (α) ⎧ ⎪ ∂Xi n−1 ∂Xi ⎪ =− + gi (α), i = 1, 2, . . . , n, ⎪ ∂α ⎪ ∂αk ⎪ n ⎪ k=1 ⎪ ⎨ ∂Z n−1 n ∂Z =− g (α)P (α), + (1.1) ∂αk ⎪ ⎪ ∂αn k=1 =1 ⎪ ⎪ ⎪ ∂P ⎪ n−1 n ⎪ i ⎩ ∂Pi =− − ai (X (α), Z (α), P (α))g (α), i = 1, 2, . . . , n, ∂αk ∂αn k=1 =1where α ≡ (α1 , α2 , . . . , αn ) are independent variables, X (α) ≡ X1 (α), X2 (α), . . . ,∗ Thiswork was supported in part by the National Basic Research Program in Natural Science,Vietnam.110 Ha Tien Ngoan and Nguyen Thi NgaXn (α) , P (α) ≡ P1 (α), P2 (α), . . . , , Pn (α) and aij (X, Z, P ) are given smoothfunctions defined in R2n+1 , g (α) = (g1 (α), g2 (α), . . . , gn (α))T = v1 (α) × v2 (α) × · · · × vn−1 (α) ∈ Rn , (1.2) ∂P ∂X vj (α) = A(X (α), Z (α), P (α)) + ∂αj ∂αj = (vj 1 (α), vj 2 (α), . . . , vjn (α)) ∈ Rn , j = 1, 2, . . . , n − 1. (1.3)where A(X, Z, P ) ≡ [aij (X, Z, P )]n×n , aij (X, Z, P ) are the same as in (1.1), ∂X ∂X1 ∂X2 ∂Xn ) ∈ Rn , j = 1, 2, . . . , n. , ,..., =( ∂αj ∂αj ∂αj ∂αj ∂P ∂ P1 ∂P2 ∂Pn ∈ R n , j = 1, 2, . . . , n , ,..., = ∂αj ∂αj ∂αj ∂αj e1 e2 ... en−1 en v11 v12 ... v1,n−1 v1,n v21 v22 ... v2,n−1 v2,n ∈ Rn , v1 × v2 × · · · × vn−1 = (1.4) . . . . .. . . . . . . . . . vn−1,1 vn−2,2 ... vn−1,n vn−1,ne1 , e2 , . . . , en are unit column-vectors on coordinate axes Ox1 , Ox2 , . . . , Oxn , re-spectively. We note from (1.4) that gi (α) will be determined in (2.7) by a determinantof order (n-1), whose elements vjk by (2.8), (2.1) and (2.2) are homogenouspolynomials of degree 1 with respect to the same derivatives ∂X (k ) , ∂P (k ) , k = α α ∂α ∂α1, 2, . . . , n − 1. So all gi (α) are homogenous polynomials of degree (n − 1) withrespect to the derivatives ∂X (k ) , ∂P (k ) , k = 1, 2, . . . , n − 1 with coefficients de- α α ∂α ∂αpending on aij (X (α), Z (α), P (α)). Therefore the system (1.1) is normal, becauseall derivatives of the unknowns X, Z, P with respect to the αn are expressed interms of their derivatives with respect to the rest variables α1 , α2 , ..., αn−1 . In [1 - 7] the classical hyperbolic Monge-Amp`re equations (n = 2) has been estudied by reducing them to some first-order quasilinear hyperbolic systems (1.1)with 5 equations and 5 unknowns. The Cauchy problem for some hyperbolic orweakly hyperbolic systems had been studied in [11 - 12]. In [8] we have reduced the following multidimensional Monge-Amp`re equa- etion det [zxi xj + aij (x, z, p)]n×n = 0, (1.5)to the system (1.1), where x = (x1 , x2 , . . . , xn ) ∈ Rn , z = z (x) is an unknownfunction, p = (p1 , p2 , . . . , pn ) = (zx1 , zx2 , . . . , zxn ). The functions aij (x, z, p) arethe same ones as in (1.1). We have shown in [8] that a solut ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "On the Hyperbolicity of Some Systems of Nonlinear "Vietnam Journal of Mathematics 34:1 (2006) 109–128 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 9$67 On the Hyperbolicity of Some Systems of Nonlinear First-Order Partial Differential Equations* Ha Tien Ngoan and Nguyen Thi Nga Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam Received July 6, 2005 Revised September 16, 2005Abstract. In this paper we study the hyperbolicity of some normal systems of first-order nonlinear partial differential equations, to which some multidimensional Monge-Amp`re equations have been reduced in [8]. We prove that when the dimension n 5 eall these systems are weakly hyperbolic.1. IntroductionWe consider the following normal system of 2n + 1 first-order nonlinear partialdifferential equations with respect to 2n +1 unknown functions X (α), Z (α), P (α) ⎧ ⎪ ∂Xi n−1 ∂Xi ⎪ =− + gi (α), i = 1, 2, . . . , n, ⎪ ∂α ⎪ ∂αk ⎪ n ⎪ k=1 ⎪ ⎨ ∂Z n−1 n ∂Z =− g (α)P (α), + (1.1) ∂αk ⎪ ⎪ ∂αn k=1 =1 ⎪ ⎪ ⎪ ∂P ⎪ n−1 n ⎪ i ⎩ ∂Pi =− − ai (X (α), Z (α), P (α))g (α), i = 1, 2, . . . , n, ∂αk ∂αn k=1 =1where α ≡ (α1 , α2 , . . . , αn ) are independent variables, X (α) ≡ X1 (α), X2 (α), . . . ,∗ Thiswork was supported in part by the National Basic Research Program in Natural Science,Vietnam.110 Ha Tien Ngoan and Nguyen Thi NgaXn (α) , P (α) ≡ P1 (α), P2 (α), . . . , , Pn (α) and aij (X, Z, P ) are given smoothfunctions defined in R2n+1 , g (α) = (g1 (α), g2 (α), . . . , gn (α))T = v1 (α) × v2 (α) × · · · × vn−1 (α) ∈ Rn , (1.2) ∂P ∂X vj (α) = A(X (α), Z (α), P (α)) + ∂αj ∂αj = (vj 1 (α), vj 2 (α), . . . , vjn (α)) ∈ Rn , j = 1, 2, . . . , n − 1. (1.3)where A(X, Z, P ) ≡ [aij (X, Z, P )]n×n , aij (X, Z, P ) are the same as in (1.1), ∂X ∂X1 ∂X2 ∂Xn ) ∈ Rn , j = 1, 2, . . . , n. , ,..., =( ∂αj ∂αj ∂αj ∂αj ∂P ∂ P1 ∂P2 ∂Pn ∈ R n , j = 1, 2, . . . , n , ,..., = ∂αj ∂αj ∂αj ∂αj e1 e2 ... en−1 en v11 v12 ... v1,n−1 v1,n v21 v22 ... v2,n−1 v2,n ∈ Rn , v1 × v2 × · · · × vn−1 = (1.4) . . . . .. . . . . . . . . . vn−1,1 vn−2,2 ... vn−1,n vn−1,ne1 , e2 , . . . , en are unit column-vectors on coordinate axes Ox1 , Ox2 , . . . , Oxn , re-spectively. We note from (1.4) that gi (α) will be determined in (2.7) by a determinantof order (n-1), whose elements vjk by (2.8), (2.1) and (2.2) are homogenouspolynomials of degree 1 with respect to the same derivatives ∂X (k ) , ∂P (k ) , k = α α ∂α ∂α1, 2, . . . , n − 1. So all gi (α) are homogenous polynomials of degree (n − 1) withrespect to the derivatives ∂X (k ) , ∂P (k ) , k = 1, 2, . . . , n − 1 with coefficients de- α α ∂α ∂αpending on aij (X (α), Z (α), P (α)). Therefore the system (1.1) is normal, becauseall derivatives of the unknowns X, Z, P with respect to the αn are expressed interms of their derivatives with respect to the rest variables α1 , α2 , ..., αn−1 . In [1 - 7] the classical hyperbolic Monge-Amp`re equations (n = 2) has been estudied by reducing them to some first-order quasilinear hyperbolic systems (1.1)with 5 equations and 5 unknowns. The Cauchy problem for some hyperbolic orweakly hyperbolic systems had been studied in [11 - 12]. In [8] we have reduced the following multidimensional Monge-Amp`re equa- etion det [zxi xj + aij (x, z, p)]n×n = 0, (1.5)to the system (1.1), where x = (x1 , x2 , . . . , xn ) ∈ Rn , z = z (x) is an unknownfunction, p = (p1 , p2 , . . . , pn ) = (zx1 , zx2 , . . . , zxn ). The functions aij (x, z, p) arethe same ones as in (1.1). We have shown in [8] that a solut ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcTài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 359 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 239 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 223 0 0 -
23 trang 212 0 0
-
40 trang 201 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 186 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 184 0 0 -
8 trang 183 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 173 0 0 -
Chuyên đề mạng máy tính: Tìm hiểu và Cài đặt Group Policy trên windows sever 2008
18 trang 161 0 0