Danh mục

Báo cáo toán học: On the Laws of Large Numbers for Blockwise Martingale Differences and Blockwise Adapted Sequences

Số trang: 8      Loại file: pdf      Dung lượng: 108.03 KB      Lượt xem: 5      Lượt tải: 0    
Jamona

Phí tải xuống: 4,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong bài báo này chúng tôi thiết lập luật pháp của các số lượng lớn cho sự khác biệt martingale blockwise và cho các trình tự blockwise thích nghi stochastically thống trị bởi một biến ngẫu nhiên. Một số kết quả nổi tiếng đến từ tài liệu được mở rộng.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " On the Laws of Large Numbers for Blockwise Martingale Differences and Blockwise Adapted Sequences" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:1 (2005) 55–62 RI 0$7+(0$7,&6 ‹ 9$67 On the Laws of Large Numbers for Blockwise Martingale Differences and Blockwise Adapted Sequences Le Van Thanh and Nguyen Van Quang Department of Mathematics, University of Vinh, Vinh, Nghe An, Vietnam Received September 29, 2003 Revised October 5, 2004Abstract. In this paper we establish the laws of large numbers for blockwise martin-gale differences and for blockwise adapted sequences which are stochastically dominatedby a random variable. Some well-known results from the literature are extended.1. Introduction and NotationsLet {Fn , n ≥ 1} be an increasing σ -fields and let {Xn , n ≥ 1} be a sequence ofrandom variables. We recall that the sequence {Xn , n ≥ 1} is said to be adaptedto {Fn , n ≥ 1} if each Xn is measurable with respect to Fn . The sequence{Xn , n ≥ 1} is said to be stochastically dominated by a random variable X ifthere exists a constant C > 0 such that P {|Xn | ≥ t} ≤ CP {|X | ≥ t} for allnonnegative real numbers t and for all n ≥ 1. Related to the adapted sequences, Hall and Heyde [3] proved the followingtheorem.Theorem 1.1. (see [3], Theorem 2.19) Let {Fn , n ≥ 1} be an increasing σ -fieldsand {Xn , n ≥ 1} is adapted to {Fn , n ≥ 1}. If {Xn , n ≥ 1} is stochasticallydominated by a random variable X with E |X | < ∞, then n 1 P (Xi − E (Xi |Fi−1 )) → 0 as n → ∞. (1.1) n i=1In the case, when E (|X | log+ |X |) < ∞ or Xn are independent, the convergence56 Le Van Thanh and Nguyen Van Quangin (1.1) can be strengthened to a.s. convergence. Moricz [4] introduced the concept of blockwise m-dependence for a sequenceof random variables and extended the classical Kolmogorov strong law of largenumbers to the blockwise m-dependence case. Later, the strong law of largenumbers for arbitrary blockwise independent random variables was also studiedby Gaposhkin [1]. He then showed in [2] that some properties of independentsequences of random variables remain satisfied for the sequences consisting ofindependent blocks. However, the same problem for sequences of blockwise in-dependent and identically distributed random variables and for blockwise mar-tingale differences is not yet studied. The main results of this paper are Theorems 3.1, 3.3. Theorem 3.1 establishesthe strong law of large numbers for arbitrary blockwise martingale differences.In Theorem 3.3, we set up the law of large numbers for the so called blockwiseadapted sequences which are stochastically dominated by a random variable X .Some well-known results from the literature are extended. Let {ω (n), n ≥ 1} be a strictly increasing sequence of positive integers withω (1) = 1. For each k ≥ 1, we set Δk = ω (k ), ω (k + 1) . We recall that asequence {Xi , i ≥ 1} of random variables is blockwise independent with respectto blocks [Δk ], if for any fixed k , the sequence {Xi }i∈Δk is independent. Now let {Fi , i ≥ 1} be a sequence of σ -fields such that for any fixed k , thesequence {Fi , i ∈ Δk } is increasing. The sequence {Xi , i ≥ 1} of random vari-ables is said to be blockwise adapted to {Fi , i ≥ 1}, if each Xi is measurable withrespect to Fi . The sequence {Xi , Fi , i ≥ 1} called a blockwise martingale differ-ence with respect to blocks [Δk ], if for any fixed k , the sequence {Xi , Fi }i∈Δk isa martingale difference. Let Nm = min{n|ω (n) ≥ 2m }, sm = Nm+1 − Nm + 1, ϕ(i) = max sk if i ∈ [2m , 2m+1 ), k ≤m (m) = [2m , 2m+1 ), m ≥ 0, Δ (m) = Δk ∩ Δ(m) , m ≥ 0, k ≥ 1, Δk (m) pm = min{k : Δk = ∅}, (m) qm = max{k : = ∅}. ΔkSince ω (Nm − 1) < 2 , ω (Nm ) ≥ 2 , ω (Nm+1 ) ≥ 2m+1 for each m ≥ 1, the m m (m)number of nonempty blocks [Δk ] is no ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: