Báo cáo toán học: Some Examples of ACS-Rings
Số trang: 9
Loại file: pdf
Dung lượng: 113.84 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Nhập văn bản hoặc địa chỉ trang web hoặc dịch tài liệu.HủyBản dịch từ Tiếng Anh sang Tiếng ViệtMột R vòng được gọi là quyền ACS-ring nếu Annihilator của bất kỳ yếu tố trong R là điều cần thiết trong một summand trực tiếp của R. Trong lưu ý điều này, chúng tôi sẽ trưng bày một số ví dụ cơ bản nhưng quan trọng của ACS-nhẫn. R là một vòng giảm, sau đó R là một ACS vòng bên phải nếu và chỉ nếu R [x] là một ACS vòng bên phải....
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "Some Examples of ACS-Rings" Vietnam Journal of Mathematics 35:1 (2007) 11–19 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 Some Examples of ACS-Rings Qingyi Zeng Department of Mathematics, Shaoguan University, Shaoguan, 512005, China Received November 09, 2005 Revised July 16, 2006Abstract. A ring R is called a right ACS-ring if the annihilator of any element inR is essential in a direct summand of R. In this note we will exhibit some elementarybut important examples of ACS-rings. Let R be a reduced ring, then R is a rightACS-ring if and only if R[x] is a right ACS-ring. Let R be an α-rigid ring. ThenR is a right ACS-ring if and only if the Ore extension R[x; α] is a right ACS-ring.A counterexample is given to show that the upper matrix ring Tn (R) over a rightACS-ring R need not be a right ACS-ring.2000 Mathematics Subject Classfication: 16E50, 16N99.Keywords: ACS-rings; annihilators; idempotents; essential; extensions of rings.1. Introduction and PreliminariesThroughout this paper, unless otherwise stated, all rings are associative ringswith identity and all modules are unitary right R-modules. In [1] a submodule N of M is called an essential submodule, denoted byN ≤e M , if for any nonzero submodule L of M, L ∩ N = 0. (Note that we areemploying the convention that 0 ≤e 0.) Let M be a module and N a submoduleof M . Then N ≤e M if and only if for any 0 = m ∈ M , there is r ∈ R such that0 = mr ∈ N . From [2] a ring R is called a right ACS-ring if the right annihilator of everyelement of R is essential in a direct summand of RR ; or equivalently, R is a rightACS-ring if, for any a ∈ R, aR = P ⊕ S where PR is a projective right idealand SR is a singular right ideal of R. A ring R is called a right p.p.-ring if every12 Qingyi Zengprincipal ideal of R is projective; or equivalently, the right annihilator of everyelement of R is generated by an idempotent of R. It is known that for a rightnonsingular ring R, R is a right ACS-ring if and only if R is a right p.p.-ring.Also it is shown in [4] that polynomial rings over right p.p.-rings need not beright p.p.-rings. From [5] a ring R is called right p.q-Baer if the right annihilator of rightprincipal ideal of R is generalized by an idempotent of R. A ring R is calledreduced if it has no nonzero nilpotent. In a reduced ring R, all idempotents arecentral in R and rR(X ) = lR (X ) for any subset X of R. A ring R is calledabelian if all idempotents of R are central. Reduced rings are abelian. A ring R is called Armendariz if whenever polynomials f (x) = a0 + a1x + · · ·+am xm , g(x) = b0 + b1 x + · · · + bn xn ∈ R[x] satisfy f (x)g(x) = 0, then aibj = 0for each i, j (see [7]). Reduced rings are Armendariz rings and Armendariz ringsare abelian (see [7, Lemma 7]). In Sec. 2, we first characterize reduced right ACS-ring and then show thatR is a right ACS-ring if and only if S is a right ACS-ring, where S = R ∗ Z isthe Dorroh extension of R by Z. In Sec. 3, it is shown that, for a reduced ring R, R is a right ACS-ring ifand only if R[x] is a right ACS-ring. Let R be an α-rigid ring. Then R is a rightACS-ring if and only if the Ore extension R[x; α] is a right ACS-ring. In Sec. 4, a counterexample is given to show that the upper matrix ringTn (R) over a right ACS-ring R need not be a right ACS-ring. Let R be a ring and a ∈ R, we denote by rR (a) = {r ∈ R | ar = 0}(resp.lR (a) ={r ∈ R | ra = 0}) the right (resp.left) annihilator of a.2. Some Results and the Dorroh Extension of ACS-RingsIn this section we will first characterize reduced ACS-rings and then investigatethe Dorro ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "Some Examples of ACS-Rings" Vietnam Journal of Mathematics 35:1 (2007) 11–19 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 Some Examples of ACS-Rings Qingyi Zeng Department of Mathematics, Shaoguan University, Shaoguan, 512005, China Received November 09, 2005 Revised July 16, 2006Abstract. A ring R is called a right ACS-ring if the annihilator of any element inR is essential in a direct summand of R. In this note we will exhibit some elementarybut important examples of ACS-rings. Let R be a reduced ring, then R is a rightACS-ring if and only if R[x] is a right ACS-ring. Let R be an α-rigid ring. ThenR is a right ACS-ring if and only if the Ore extension R[x; α] is a right ACS-ring.A counterexample is given to show that the upper matrix ring Tn (R) over a rightACS-ring R need not be a right ACS-ring.2000 Mathematics Subject Classfication: 16E50, 16N99.Keywords: ACS-rings; annihilators; idempotents; essential; extensions of rings.1. Introduction and PreliminariesThroughout this paper, unless otherwise stated, all rings are associative ringswith identity and all modules are unitary right R-modules. In [1] a submodule N of M is called an essential submodule, denoted byN ≤e M , if for any nonzero submodule L of M, L ∩ N = 0. (Note that we areemploying the convention that 0 ≤e 0.) Let M be a module and N a submoduleof M . Then N ≤e M if and only if for any 0 = m ∈ M , there is r ∈ R such that0 = mr ∈ N . From [2] a ring R is called a right ACS-ring if the right annihilator of everyelement of R is essential in a direct summand of RR ; or equivalently, R is a rightACS-ring if, for any a ∈ R, aR = P ⊕ S where PR is a projective right idealand SR is a singular right ideal of R. A ring R is called a right p.p.-ring if every12 Qingyi Zengprincipal ideal of R is projective; or equivalently, the right annihilator of everyelement of R is generated by an idempotent of R. It is known that for a rightnonsingular ring R, R is a right ACS-ring if and only if R is a right p.p.-ring.Also it is shown in [4] that polynomial rings over right p.p.-rings need not beright p.p.-rings. From [5] a ring R is called right p.q-Baer if the right annihilator of rightprincipal ideal of R is generalized by an idempotent of R. A ring R is calledreduced if it has no nonzero nilpotent. In a reduced ring R, all idempotents arecentral in R and rR(X ) = lR (X ) for any subset X of R. A ring R is calledabelian if all idempotents of R are central. Reduced rings are abelian. A ring R is called Armendariz if whenever polynomials f (x) = a0 + a1x + · · ·+am xm , g(x) = b0 + b1 x + · · · + bn xn ∈ R[x] satisfy f (x)g(x) = 0, then aibj = 0for each i, j (see [7]). Reduced rings are Armendariz rings and Armendariz ringsare abelian (see [7, Lemma 7]). In Sec. 2, we first characterize reduced right ACS-ring and then show thatR is a right ACS-ring if and only if S is a right ACS-ring, where S = R ∗ Z isthe Dorroh extension of R by Z. In Sec. 3, it is shown that, for a reduced ring R, R is a right ACS-ring ifand only if R[x] is a right ACS-ring. Let R be an α-rigid ring. Then R is a rightACS-ring if and only if the Ore extension R[x; α] is a right ACS-ring. In Sec. 4, a counterexample is given to show that the upper matrix ringTn (R) over a right ACS-ring R need not be a right ACS-ring. Let R be a ring and a ∈ R, we denote by rR (a) = {r ∈ R | ar = 0}(resp.lR (a) ={r ∈ R | ra = 0}) the right (resp.left) annihilator of a.2. Some Results and the Dorroh Extension of ACS-RingsIn this section we will first characterize reduced ACS-rings and then investigatethe Dorro ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcGợi ý tài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 356 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 232 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 221 0 0 -
23 trang 206 0 0
-
40 trang 200 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 181 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 176 0 0 -
8 trang 174 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 167 0 0 -
8 trang 158 0 0